This is the mail archive of the binutils@sources.redhat.com mailing list for the binutils project.


Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]
Other format: [Raw text]

[RFA] H8/300sx port for gas, sim, and opcodes (4/5)


This (unlike the preceding blank message) is the sim part of the h8/300sx port.
It depends on include/opcode/h8300.h, submitted separately.

2003-05-14  Michael Snyder  <msnyder@redhat.com>

	* h8300/compile.c: Add h8300sx insns and addressing modes.
	* h8300/sim-main.h: Replaces h8300/inst.h.
	* h8300/Makefile.in: Tweak to bring in some sim/common stuff.

Index: h8300/Makefile.in
===================================================================
RCS file: /cvs/src/src/sim/h8300/Makefile.in,v
retrieving revision 1.2
diff -p -r1.2 Makefile.in
*** h8300/Makefile.in   29 Jul 2002 17:01:57 -0000      1.2
--- h8300/Makefile.in   14 May 2003 22:55:23 -0000
***************
*** 18,27 ****

  ## COMMON_PRE_CONFIG_FRAG

! SIM_OBJS = compile.o sim-load.o
  ## COMMON_POST_CONFIG_FRAG

  compile.o: compile.c inst.h config.h \
!           $(srcdir)/../../include/gdb/sim-h8300.h \
!           $(srcdir)/../../include/gdb/remote-sim.h \
!           $(srcdir)/../../include/gdb/callback.h
--- 18,37 ----

  ## COMMON_PRE_CONFIG_FRAG

! # List of main object files for `run'.
! SIM_RUN_OBJS = nrun.o
!
! SIM_OBJS = compile.o \
!          $(SIM_NEW_COMMON_OBJS) \
!          sim-cpu.o \
!          sim-engine.o \
!          sim-load.o \
!          $(SIM_EXTRA_OBJS)
!
  ## COMMON_POST_CONFIG_FRAG

  compile.o: compile.c inst.h config.h \
!          $(srcdir)/../../include/gdb/sim-h8300.h \
!          $(srcdir)/../../include/opcode/h8300.h \
!          $(srcdir)/../../include/gdb/remote-sim.h \
!          $(srcdir)/../../include/gdb/callback.h
/*
 * Simulator for the Hitachi H8/300 architecture.
 *
 * Written by Steve Chamberlain of Cygnus Support. sac@cygnus.com
 *
 * This file is part of H8/300 sim
 *
 *
 * THIS SOFTWARE IS NOT COPYRIGHTED
 *
 * Cygnus offers the following for use in the public domain.  Cygnus makes no
 * warranty with regard to the software or its performance and the user
 * accepts the software "AS IS" with all faults.
 *
 * CYGNUS DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS
 * SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
 * AND FITNESS FOR A PARTICULAR PURPOSE.
 */

#include <signal.h>
#ifdef HAVE_TIME_H
#include <time.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_SYS_PARAM_H
#include <sys/param.h>
#endif

#include "bfd.h"
#include "sim-main.h"
#include "gdb/sim-h8300.h"
#include "sys/stat.h"
#include "sys/types.h"

#ifndef SIGTRAP
# define SIGTRAP 5
#endif

int debug;

host_callback *sim_callback;

static SIM_OPEN_KIND sim_kind;
static char *myname;

/* FIXME: Needs to live in header file.
   This header should also include the things in remote-sim.h.
   One could move this to remote-sim.h but this function isn't needed
   by gdb.  */
static void set_simcache_size (SIM_DESC, int);

#define X(op, size)  (op * 4 + size)

#define SP (h8300hmode ? SL : SW)

#define h8_opcodes ops
#define DEFINE_TABLE
#include "opcode/h8300.h"

/* CPU data object: */

static int
sim_state_initialize (SIM_DESC sd, sim_cpu *cpu)
{
  /* FIXME: not really necessary, since sim_cpu_alloc calls zalloc.  */

  memset (&cpu->regs, 0, sizeof(cpu->regs));
  cpu->regs[SBR_REGNUM] = 0xFFFFFF00;
  cpu->pc = 0;
  cpu->delayed_branch = 0;
  cpu->memory = NULL;
  cpu->eightbit = NULL;
  cpu->mask = 0;

  /* Initialize local simulator state.  */
  sd->sim_cache = NULL;
  sd->sim_cache_size = 0;
  sd->cache_idx = NULL;
  sd->cache_top = 0;
  sd->memory_size = 0;
  sd->compiles = 0;
#ifdef ADEBUG
  memset (&cpu->stats, 0, sizeof (cpu->stats));
#endif
  return 0;
}

static unsigned int
h8_get_pc (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> pc;
}

static void
h8_set_pc (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> pc = val;
}

static unsigned int
h8_get_ccr (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[CCR_REGNUM];
}

static void
h8_set_ccr (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[CCR_REGNUM] = val;
}

static unsigned int
h8_get_exr (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[EXR_REGNUM];
}

static void
h8_set_exr (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[EXR_REGNUM] = val;
}

static int
h8_get_sbr (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[SBR_REGNUM];
}

static void
h8_set_sbr (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> regs[SBR_REGNUM] = val;
}

static int
h8_get_vbr (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[VBR_REGNUM];
}

static void
h8_set_vbr (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> regs[VBR_REGNUM] = val;
}

static int
h8_get_cache_top (SIM_DESC sd)
{
  return sd -> cache_top;
}

static void
h8_set_cache_top (SIM_DESC sd, int val)
{
  sd -> cache_top = val;
}

static int
h8_get_mask (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> mask;
}

static void
h8_set_mask (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> mask = val;
}
#if 0
static int
h8_get_exception (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> exception;
}

static void
h8_set_exception (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> exception = val;
}

static enum h8300_sim_state
h8_get_state (SIM_DESC sd)
{
  return sd -> state;
}

static void
h8_set_state (SIM_DESC sd, enum h8300_sim_state val)
{
  sd -> state = val;
}
#endif
static unsigned int
h8_get_cycles (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[CYCLE_REGNUM];
}

static void
h8_set_cycles (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[CYCLE_REGNUM] = val;
}

static unsigned int
h8_get_insts (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[INST_REGNUM];
}

static void
h8_set_insts (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[INST_REGNUM] = val;
}

static unsigned int
h8_get_ticks (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[TICK_REGNUM];
}

static void
h8_set_ticks (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[TICK_REGNUM] = val;
}

static unsigned int
h8_get_mach (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[MACH_REGNUM];
}

static void
h8_set_mach (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[MACH_REGNUM] = val;
}

static unsigned int
h8_get_macl (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> regs[MACL_REGNUM];
}

static void
h8_set_macl (SIM_DESC sd, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> regs[MACL_REGNUM] = val;
}

static int
h8_get_compiles (SIM_DESC sd)
{
  return sd -> compiles;
}

static void
h8_increment_compiles (SIM_DESC sd)
{
  sd -> compiles ++;
}

static unsigned int *
h8_get_reg_buf (SIM_DESC sd)
{
  return &(((STATE_CPU (sd, 0)) -> regs)[0]);
}

static unsigned int
h8_get_reg (SIM_DESC sd, int regnum)
{
  return (STATE_CPU (sd, 0)) -> regs[regnum];
}

static void
h8_set_reg (SIM_DESC sd, int regnum, int val)
{
  (STATE_CPU (sd, 0)) -> regs[regnum] = val;
}

#ifdef ADEBUG
static int
h8_get_stats (SIM_DESC sd, int idx)
{
  return sd -> stats[idx];
}

static void
h8_increment_stats (SIM_DESC sd, int idx)
{
  sd -> stats[idx] ++;
}
#endif /* ADEBUG */

static unsigned short *
h8_get_cache_idx_buf (SIM_DESC sd)
{
  return sd -> cache_idx;
}

static void
h8_set_cache_idx_buf (SIM_DESC sd, unsigned short *ptr)
{
  sd -> cache_idx = ptr;
}

static unsigned short
h8_get_cache_idx (SIM_DESC sd, unsigned int idx)
{
  if (idx > sd->memory_size)
    return (unsigned short) -1;
  return sd -> cache_idx[idx];
}

static void
h8_set_cache_idx (SIM_DESC sd, int idx, unsigned int val)
{
  sd -> cache_idx[idx] = (unsigned short) val;
}

static unsigned char *
h8_get_memory_buf (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> memory;
}

static void
h8_set_memory_buf (SIM_DESC sd, unsigned char *ptr)
{
  (STATE_CPU (sd, 0)) -> memory = ptr;
}

static unsigned char
h8_get_memory (SIM_DESC sd, int idx)
{
  return (STATE_CPU (sd, 0)) -> memory[idx];
}

static void
h8_set_memory (SIM_DESC sd, int idx, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> memory[idx] = (unsigned char) val;
}

static unsigned char *
h8_get_eightbit_buf (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> eightbit;
}

static void
h8_set_eightbit_buf (SIM_DESC sd, unsigned char *ptr)
{
  (STATE_CPU (sd, 0)) -> eightbit = ptr;
}

static unsigned char
h8_get_eightbit (SIM_DESC sd, int idx)
{
  return (STATE_CPU (sd, 0)) -> eightbit[idx];
}

static void
h8_set_eightbit (SIM_DESC sd, int idx, unsigned int val)
{
  (STATE_CPU (sd, 0)) -> eightbit[idx] = (unsigned char) val;
}

static unsigned int
h8_get_delayed_branch (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> delayed_branch;
}

static void
h8_set_delayed_branch (SIM_DESC sd, unsigned int dest)
{
  (STATE_CPU (sd, 0)) -> delayed_branch = dest;
}

static char **
h8_get_command_line (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> command_line;
}

static void
h8_set_command_line (SIM_DESC sd, char ** val)
{
  (STATE_CPU (sd, 0)) -> command_line = val;
}

static char *
h8_get_cmdline_arg (SIM_DESC sd, int index)
{
  return (STATE_CPU (sd, 0)) -> command_line[index];
}

static void
h8_set_cmdline_arg (SIM_DESC sd, int index, char * val)
{
  (STATE_CPU (sd, 0)) -> command_line[index] = val;
}

/* MAC Saturation Mode */
static int
h8_get_macS (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> macS;
}

static void
h8_set_macS (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> macS = (val != 0);
}

/* MAC Zero Flag */
static int
h8_get_macZ (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> macZ;
}

static void
h8_set_macZ (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> macZ = (val != 0);
}

/* MAC Negative Flag */
static int
h8_get_macN (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> macN;
}

static void
h8_set_macN (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> macN = (val != 0);
}

/* MAC Overflow Flag */
static int
h8_get_macV (SIM_DESC sd)
{
  return (STATE_CPU (sd, 0)) -> macV;
}

static void
h8_set_macV (SIM_DESC sd, int val)
{
  (STATE_CPU (sd, 0)) -> macV = (val != 0);
}

/* End CPU data object.  */

/* The rate at which to call the host's poll_quit callback.  */

enum { POLL_QUIT_INTERVAL = 0x80000 };

#define LOW_BYTE(x) ((x) & 0xff)
#define HIGH_BYTE(x) (((x) >> 8) & 0xff)
#define P(X, Y) ((X << 8) | Y)

#define C (c != 0)
#define Z (nz == 0)
#define V (v != 0)
#define N (n != 0)
#define U (u != 0)
#define H (h != 0)
#define UI (ui != 0)
#define I (intMaskBit != 0)

#define BUILDSR(SD)						\
  h8_set_ccr (SD, (I << 7) | (UI << 6) | (H << 5) | (U << 4)	\
	     | (N << 3) | (Z << 2) | (V << 1) | C)

#ifdef __CHAR_IS_SIGNED__
#define SEXTCHAR(x) ((char) (x))
#endif

#ifndef SEXTCHAR
#define SEXTCHAR(x) ((x & 0x80) ? (x | ~0xff) : x & 0xff)
#endif

#define UEXTCHAR(x) ((x) & 0xff)
#define UEXTSHORT(x) ((x) & 0xffff)
#define SEXTSHORT(x) ((short) (x))

int h8300hmode  = 0;
int h8300smode  = 0;
int h8300sxmode = 0;

static int memory_size;

static int
get_now (void)
{
  return time (0);	/* WinXX HAS UNIX like 'time', so why not use it? */
}

static int
now_persec (void)
{
  return 1;
}

static int
bitfrom (int x)
{
  switch (x & SIZE)
    {
    case L_8:
      return SB;
    case L_16:
    case L_16U:
      return SW;
    case L_32:
      return SL;
    case L_P:
      return h8300hmode ? SL : SW;
    }
  return 0;
}

/* Simulate an indirection / dereference.  
   return 0 for success, -1 for failure.
*/

static unsigned int
lvalue (SIM_DESC sd, int x, int rn, unsigned int *val)
{
  if (val == NULL)	/* Paranoia.  */
    return -1;

  switch (x / 4)
    {
    case OP_DISP:
      if (rn == ZERO_REGNUM)
	*val = X (OP_IMM, SP);
      else
	*val = X (OP_REG, SP);
      break;
    case OP_MEM:
      *val = X (OP_MEM, SP);
      break;
    default:
      sim_engine_set_run_state (sd, sim_stopped, SIGSEGV);
      return -1;
    }
  return 0;
}

static int
cmdline_location()
{
  if (h8300smode)
    return 0xffff00L;
  else if (h8300hmode)
    return 0x2ff00L;
  else
    return 0xff00L;
}

static void
decode (SIM_DESC sd, int addr, unsigned char *data, decoded_inst *dst)
{
  int cst[3]   = {0, 0, 0};
  int reg[3]   = {0, 0, 0};
  int rdisp[3] = {0, 0, 0};
  int opnum;
  const struct h8_opcode *q;

  dst->dst.type = -1;
  dst->src.type = -1;

  /* Find the exact opcode/arg combo.  */
  for (q = h8_opcodes; q->name; q++)
    {
      op_type *nib = q->data.nib;
      unsigned int len = 0;

      if ((q->available == AV_H8SX && !h8300sxmode) ||
	  (q->available == AV_H8H  && !h8300hmode))
	continue;

      while (1)
	{
	  op_type looking_for = *nib;
	  int thisnib = data[len / 2];

	  thisnib = (len & 1) ? (thisnib & 0xf) : ((thisnib >> 4) & 0xf);
	  opnum = ((looking_for & OP3) ? 2 :
		   (looking_for & DST) ? 1 : 0);

	  if (looking_for < 16 && looking_for >= 0)
	    {
	      if (looking_for != thisnib)
		goto fail;
	    }
	  else
	    {
	      if (looking_for & B31)
		{
		  if (!((thisnib & 0x8) != 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B31);
		  thisnib &= 0x7;
		}
	      else if (looking_for & B30)
		{
		  if (!((thisnib & 0x8) == 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B30);
		}

	      if (looking_for & B21)
		{
		  if (!((thisnib & 0x4) != 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B21);
		  thisnib &= 0xb;
		}
	      else if (looking_for & B20)
		{
		  if (!((thisnib & 0x4) == 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B20);
		}

	      if (looking_for & B11)
		{
		  if (!((thisnib & 0x2) != 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B11);
		  thisnib &= 0xd;
		}
	      else if (looking_for & B10)
		{
		  if (!((thisnib & 0x2) == 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B10);
		}

	      if (looking_for & B01)
		{
		  if (!((thisnib & 0x1) != 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B01);
		  thisnib &= 0xe;
		}
	      else if (looking_for & B00)
		{
		  if (!((thisnib & 0x1) == 0))
		    goto fail;

		  looking_for = (op_type) (looking_for & ~B00);
		}

	      if (looking_for & IGNORE)
		{
		  /* Hitachi has declared that IGNORE must be zero.  */
		  if (thisnib != 0)
		    goto fail;
		}
	      else if ((looking_for & MODE) == DATA)
		{
		  ;			/* Skip embedded data.  */
		}
	      else if ((looking_for & MODE) == DBIT)
		{
		  /* Exclude adds/subs by looking at bit 0 and 2, and
                     make sure the operand size, either w or l,
                     matches by looking at bit 1.  */
		  if ((looking_for & 7) != (thisnib & 7))
		    goto fail;

		  cst[opnum] = (thisnib & 0x8) ? 2 : 1;
		}
	      else if ((looking_for & MODE) == REG     ||
		       (looking_for & MODE) == LOWREG  ||
		       (looking_for & MODE) == IND     ||
		       (looking_for & MODE) == PREINC  ||
		       (looking_for & MODE) == POSTINC ||
		       (looking_for & MODE) == PREDEC  ||
		       (looking_for & MODE) == POSTDEC)
		{
		  reg[opnum] = thisnib;
		}
	      else if (looking_for & CTRL)
		{
		  thisnib &= 7;
		  if (((looking_for & MODE) == CCR  && (thisnib != C_CCR))  ||
		      ((looking_for & MODE) == EXR  && (thisnib != C_EXR))  ||
		      ((looking_for & MODE) == MACH && (thisnib != C_MACH)) ||
		      ((looking_for & MODE) == MACL && (thisnib != C_MACL)) ||
		      ((looking_for & MODE) == VBR  && (thisnib != C_VBR))  ||
		      ((looking_for & MODE) == SBR  && (thisnib != C_SBR)))
		    goto fail;
		  if (((looking_for & MODE) == CCR_EXR && 
		       (thisnib != C_CCR && thisnib != C_EXR)) ||
		      ((looking_for & MODE) == VBR_SBR && 
		       (thisnib != C_VBR && thisnib != C_SBR)) ||
		      ((looking_for & MODE) == MACREG && 
		       (thisnib != C_MACH && thisnib != C_MACL)))
		    goto fail;
		  if (((looking_for & MODE) == CC_EX_VB_SB && 
		       (thisnib != C_CCR && thisnib != C_EXR &&
			thisnib != C_VBR && thisnib != C_SBR)))
		    goto fail;

		  reg[opnum] = thisnib;
		}
	      else if ((looking_for & MODE) == ABS)
		{
		  /* Absolute addresses are unsigned.  */
		  switch (looking_for & SIZE)
		    {
		    case L_8:
		      cst[opnum] = UEXTCHAR (data[len / 2]);
		      break;
		    case L_16:
		    case L_16U:
		      cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
		      break;
		    case L_32:
		      cst[opnum] = 
			(data[len / 2 + 0] << 24) + 
			(data[len / 2 + 1] << 16) +
			(data[len / 2 + 2] <<  8) +  
			(data[len / 2 + 3]);
		      break;
		    default:
		      printf ("decode: bad size ABS: %d\n", 
			      (looking_for & SIZE));
		      goto end;
		    }
		}
	      else if ((looking_for & MODE) == DISP   ||
		       (looking_for & MODE) == PCREL  ||
		       (looking_for & MODE) == INDEXB ||
		       (looking_for & MODE) == INDEXW ||
		       (looking_for & MODE) == INDEXL)

		{
		  switch (looking_for & SIZE)
		    {
		    case L_2:
		      cst[opnum] = thisnib & 3;

		      /* DISP2 special treatment.  */
		      if ((looking_for & MODE) == DISP)
			{
			  switch (OP_SIZE (q->how)) {
			  default: break;
			  case SW:
			    cst[opnum] *= 2;
			    break;
			  case SL:
			    cst[opnum] *= 4;
			    break;
			  }
			}
		      break;
		    case L_8:
		      cst[opnum] = SEXTCHAR (data[len / 2]);
		      break;
		    case L_16:
		      cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
		      cst[opnum] = (short) cst[opnum];	/* Sign extend.  */
		      break;
		    case L_16U:
		      cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
		      break;
		    case L_32:
		      cst[opnum] = 
			(data[len / 2 + 0] << 24) + 
			(data[len / 2 + 1] << 16) +
			(data[len / 2 + 2] <<  8) +  
			(data[len / 2 + 3]);
		      break;
		    default:
		      printf ("decode: bad size DISP/PCREL/INDEX: %d\n", 
			      (looking_for & SIZE));
		      goto end;
		    }
		}
	      else if ((looking_for & SIZE) == L_16 ||
		       (looking_for & SIZE) == L_16U)
		{
		  cst[opnum] = (data[len / 2] << 8) + data[len / 2 + 1];
		  if ((looking_for & SIZE) != L_16U)
		    cst[opnum] = (short) cst[opnum];	/* Sign extend.  */
		}
	      else if (looking_for & ABSJMP)
		{
		  switch (looking_for & SIZE) {
		  case L_24:
		    cst[opnum] = (data[1] << 16) | (data[2] << 8) | (data[3]);
		    break;
		  case L_32:
		    cst[opnum] = 
		      (data[len / 2 + 0] << 24) + 
		      (data[len / 2 + 1] << 16) +
		      (data[len / 2 + 2] <<  8) +  
		      (data[len / 2 + 3]);
		    break;
		  default:
		    printf ("decode: bad size ABSJMP: %d\n", 
			    (looking_for & SIZE));
		      goto end;
		  }
		}
	      else if ((looking_for & MODE) == MEMIND)
		{
		  cst[opnum] = data[1];
		}
	      else if ((looking_for & SIZE) == L_32)
		{
		  int i = len / 2;

		  cst[opnum] = 
		    (data[i + 0] << 24) |
		    (data[i + 1] << 16) |
		    (data[i + 2] <<  8) |
		    (data[i + 3]);
		}
	      else if ((looking_for & SIZE) == L_24)
		{
		  int i = len / 2;

		  cst[opnum] = 
		    (data[i + 0] << 16) | 
		    (data[i + 1] << 8) | 
		    (data[i + 2]);
		}
	      else if (looking_for & DISPREG)
		{
		  rdisp[opnum] = thisnib & 0x7;
		}
	      else if ((looking_for & MODE) == KBIT)
		{
		  switch (thisnib)
		    {
		    case 9:
		      cst[opnum] = 4;
		      break;
		    case 8:
		      cst[opnum] = 2;
		      break;
		    case 0:
		      cst[opnum] = 1;
		      break;
		    default:
		      goto fail;
		    }
		}
	      else if ((looking_for & SIZE) == L_8)
		{
		  if ((looking_for & MODE) == ABS)
		    {
		      /* Will be combined with contents of SBR_REGNUM
			 by fetch ().  For all modes except h8sx, this
			 will always contain the value 0xFFFFFF00.  */
		      cst[opnum] = data[len / 2] & 0xff;
		    }
		  else
		    {
		      cst[opnum] = data[len / 2] & 0xff;
		    }
		}
	      else if ((looking_for & SIZE) == L_3 ||
		       (looking_for & SIZE) == L_3NZ)
		{
		  cst[opnum] = thisnib & 7;
		  if (cst[opnum] == 0 && (looking_for & SIZE) == L_3NZ)
		    goto fail;
		}
	      else if ((looking_for & SIZE) == L_4)
		{
		  cst[opnum] = thisnib & 15;
		}
	      else if ((looking_for & SIZE) == L_5)
		{
		  cst[opnum] = data[len / 2] & 0x1f;
		}
	      else if (looking_for == E)
		{
#ifdef ADEBUG
		  dst->op = q;
#endif
		  /* Fill in the args.  */
		  {
		    op_type *args = q->args.nib;
		    int hadone = 0;
		    int nargs;

		    for (nargs = 0; 
			 nargs < 3 && *args != E; 
			 nargs++)
		      {
			int x = *args;
			ea_type *p;

			opnum = ((x & OP3) ? 2 :
				 (x & DST) ? 1 : 0);
			if (x & DST)
			  p = &dst->dst;
			else if (x & OP3)
			  p = &dst->op3;
			else
			  p = &dst->src;

			if ((x & MODE) == IMM  ||
			    (x & MODE) == KBIT ||
			    (x & MODE) == DBIT)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_IMM, OP_SIZE (q->how));
			    p->literal = cst[opnum];
			  }
			else if ((x & MODE) == CONST_2 ||
				 (x & MODE) == CONST_4 ||
				 (x & MODE) == CONST_8 ||
				 (x & MODE) == CONST_16)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_IMM, OP_SIZE (q->how));
			    switch (x & MODE) {
			    case CONST_2:	p->literal =  2; break;
			    case CONST_4:	p->literal =  4; break;
			    case CONST_8:	p->literal =  8; break;
			    case CONST_16:	p->literal = 16; break;
			    }
			  }
			else if ((x & MODE) == REG)
			  {
			    p->type = X (OP_REG, bitfrom (x));
			    p->reg = reg[opnum];
			  }
			else if ((x & MODE) == LOWREG)
			  {
			    p->type = X (OP_LOWREG, bitfrom (x));
			    p->reg = reg[opnum];
			  }
			else if ((x & MODE) == PREINC)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_PREINC, OP_SIZE (q->how));
			    p->reg = reg[opnum] & 0x7;
			  }
			else if ((x & MODE) == POSTINC)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_POSTINC, OP_SIZE (q->how));
			    p->reg = reg[opnum] & 0x7;
			  }
			else if ((x & MODE) == PREDEC)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_PREDEC, OP_SIZE (q->how));
			    p->reg = reg[opnum] & 0x7;
			  }
			else if ((x & MODE) == POSTDEC)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_POSTDEC, OP_SIZE (q->how));
			    p->reg = reg[opnum] & 0x7;
			  }
			else if ((x & MODE) == IND)
			  {
			    /* Note: an indirect is transformed into
			       a displacement of zero.  
			    */
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_DISP, OP_SIZE (q->how));
			    p->reg = reg[opnum] & 0x7;
			    p->literal = 0;
			    if (OP_KIND (q->how) == O_JSR ||
				OP_KIND (q->how) == O_JMP)
			      if (lvalue (sd, p->type, p->reg, &p->type))
				goto end;
			  }
			else if ((x & MODE) == ABS)
			  {
			    /* Note: a 16 or 32 bit ABS is transformed into a 
			       displacement from pseudo-register ZERO_REGNUM,
			       which is always zero.  An 8 bit ABS becomes
			       a displacement from SBR_REGNUM.
			    */
			    /* Use the instruction to determine 
			       the operand size.  */
			    p->type = X (OP_DISP, OP_SIZE (q->how));
			    p->literal = cst[opnum];

			    /* 8-bit ABS is displacement from SBR.
			       16 and 32-bit ABS are displacement from ZERO.
			       (SBR will always be zero except for h8/sx)
			    */
			    if ((x & SIZE) == L_8)
			      p->reg = SBR_REGNUM;
			    else
			      p->reg = ZERO_REGNUM;;
			  }
			else if ((x & MODE) == MEMIND)
			  {
			    /* Size doesn't matter.  */
			    p->type = X (OP_MEM, SB);
			    p->literal = cst[opnum];
			    if (OP_KIND (q->how) == O_JSR ||
				OP_KIND (q->how) == O_JMP)
			      if (lvalue (sd, p->type, p->reg, &p->type))
				goto end;
			  }
			else if ((x & MODE) == PCREL)
			  {
			    /* Size doesn't matter.  */
			    p->type = X (OP_PCREL, SB);
			    p->literal = cst[opnum];
			  }
			else if (x & ABSJMP)
			  {
			    p->type = X (OP_IMM, SP);
			    p->literal = cst[opnum];
			  }
			else if ((x & MODE) == INDEXB ||
				 (x & MODE) == INDEXW ||
				 (x & MODE) == INDEXL ||
				 (x & MODE) == DISP)
			  {
			    /* Use the instruction to determine 
			       the operand size.  */
			    switch (x & MODE) {
			    case INDEXB:
			      p->type = X (OP_INDEXB, OP_SIZE (q->how));
			      break;
			    case INDEXW:
			      p->type = X (OP_INDEXW, OP_SIZE (q->how));
			      break;
			    case INDEXL:
			      p->type = X (OP_INDEXL, OP_SIZE (q->how));
			      break;
			    case DISP:
			      p->type = X (OP_DISP,   OP_SIZE (q->how));
			      break;
			    }

			    p->literal = cst[opnum];
			    p->reg     = rdisp[opnum];
			  }
			else if (x & CTRL)
			  {
			    switch (reg[opnum])
			      {
			      case C_CCR:
				p->type = X (OP_CCR, SB);
				break;
			      case C_EXR:
				p->type = X (OP_EXR, SB);
				break;
			      case C_MACH:
				p->type = X (OP_MACH, SL);
				break;
			      case C_MACL:
				p->type = X (OP_MACL, SL);
				break;
			      case C_VBR:
				p->type = X (OP_VBR, SL);
				break;
			      case C_SBR:
				p->type = X (OP_SBR, SL);
				break;
			      }
			  }
			else if ((x & MODE) == CCR)
			  {
			    p->type = OP_CCR;
			  }
			else if ((x & MODE) == EXR)
			  {
			    p->type = OP_EXR;
			  }
			else
			  printf ("Hmmmm %x...\n", x);

			args++;
		      }
		  }

		  /* Unary operators: treat src and dst as equivalent.  */
		  if (dst->dst.type == -1)
		    dst->dst = dst->src;
		  if (dst->src.type == -1)
		    dst->src = dst->dst;

		  dst->opcode = q->how;
		  dst->cycles = q->time;

		  /* And jsr's to these locations are turned into 
		     magic traps.  */

		  if (OP_KIND (dst->opcode) == O_JSR)
		    {
		      switch (dst->src.literal)
			{
			case 0xc5:
			  dst->opcode = O (O_SYS_OPEN, SB);
			  break;
			case 0xc6:
			  dst->opcode = O (O_SYS_READ, SB);
			  break;
			case 0xc7:
			  dst->opcode = O (O_SYS_WRITE, SB);
			  break;
			case 0xc8:
			  dst->opcode = O (O_SYS_LSEEK, SB);
			  break;
			case 0xc9:
			  dst->opcode = O (O_SYS_CLOSE, SB);
			  break;
			case 0xca:
			  dst->opcode = O (O_SYS_STAT, SB);
			  break;
			case 0xcb:
			  dst->opcode = O (O_SYS_FSTAT, SB);
			  break;
			case 0xcc:
			  dst->opcode = O (O_SYS_CMDLINE, SB);
			  break;
			}
		      /* End of Processing for system calls.  */
		    }

		  dst->next_pc = addr + len / 2;
		  return;
		}
	      else
		printf ("Don't understand %x \n", looking_for);
	    }

	  len++;
	  nib++;
	}

    fail:
      ;
    }
 end:
  /* Fell off the end.  */
  dst->opcode = O (O_ILL, SB);
}

static void
compile (SIM_DESC sd, int pc)
{
  int idx;

  /* Find the next cache entry to use.  */
  idx = h8_get_cache_top (sd) + 1;
  h8_increment_compiles (sd);
  if (idx >= sd->sim_cache_size)
    {
      idx = 1;
    }
  h8_set_cache_top (sd, idx);

  /* Throw away its old meaning.  */
  h8_set_cache_idx (sd, sd->sim_cache[idx].oldpc, 0);

  /* Set to new address.  */
  sd->sim_cache[idx].oldpc = pc;

  /* Fill in instruction info.  */
  decode (sd, pc, h8_get_memory_buf (sd) + pc, sd->sim_cache + idx);

  /* Point to new cache entry.  */
  h8_set_cache_idx (sd, pc, idx);
}


static unsigned char  *breg[32];
static unsigned short *wreg[16];
static unsigned int   *lreg[18];

#define GET_B_REG(X)     *(breg[X])
#define SET_B_REG(X, Y) (*(breg[X])) = (Y)
#define GET_W_REG(X)     *(wreg[X])
#define SET_W_REG(X, Y) (*(wreg[X])) = (Y)
#define GET_L_REG(X)     h8_get_reg (sd, X)
#define SET_L_REG(X, Y)  h8_set_reg (sd, X, Y)

#define GET_MEMORY_L(X) \
  ((X) < memory_size \
   ? ((h8_get_memory (sd, (X)+0) << 24) | (h8_get_memory (sd, (X)+1) << 16)  \
    | (h8_get_memory (sd, (X)+2) <<  8) | (h8_get_memory (sd, (X)+3) <<  0)) \
   : ((h8_get_eightbit (sd, ((X)+0) & 0xff) << 24) \
    | (h8_get_eightbit (sd, ((X)+1) & 0xff) << 16) \
    | (h8_get_eightbit (sd, ((X)+2) & 0xff) <<  8) \
    | (h8_get_eightbit (sd, ((X)+3) & 0xff) <<  0)))

#define GET_MEMORY_W(X) \
  ((X) < memory_size \
   ? ((h8_get_memory   (sd, (X)+0) << 8) \
    | (h8_get_memory   (sd, (X)+1) << 0)) \
   : ((h8_get_eightbit (sd, ((X)+0) & 0xff) << 8) \
    | (h8_get_eightbit (sd, ((X)+1) & 0xff) << 0)))


#define GET_MEMORY_B(X) \
  ((X) < memory_size ? (h8_get_memory   (sd, (X))) \
                     : (h8_get_eightbit (sd, (X) & 0xff)))

#define SET_MEMORY_L(X, Y)  \
{  register unsigned char *_p; register int __y = (Y); \
   _p = ((X) < memory_size ? h8_get_memory_buf   (sd) +  (X) : \
                             h8_get_eightbit_buf (sd) + ((X) & 0xff)); \
   _p[0] = __y >> 24; _p[1] = __y >> 16; \
   _p[2] = __y >>  8; _p[3] = __y >>  0; \
}

#define SET_MEMORY_W(X, Y) \
{  register unsigned char *_p; register int __y = (Y); \
   _p = ((X) < memory_size ? h8_get_memory_buf   (sd) +  (X) : \
                             h8_get_eightbit_buf (sd) + ((X) & 0xff)); \
   _p[0] = __y >> 8; _p[1] = __y; \
}

#define SET_MEMORY_B(X, Y) \
  ((X) < memory_size ? (h8_set_memory   (sd, (X), (Y))) \
                     : (h8_set_eightbit (sd, (X) & 0xff, (Y))))

/* Simulate a memory fetch.
   Return 0 for success, -1 for failure.
*/

static int
fetch_1 (SIM_DESC sd, ea_type *arg, int *val, int twice)
{
  int rn = arg->reg;
  int abs = arg->literal;
  int r;
  int t;

  if (val == NULL)
    return -1;		/* Paranoia.  */

  switch (arg->type)
    {
      /* Indexed register plus displacement mode:

	 This new family of addressing modes are similar to OP_DISP
	 (register plus displacement), with two differences:
	   1) INDEXB uses only the least significant byte of the register,
	      INDEXW uses only the least significant word, and
	      INDEXL uses the entire register (just like OP_DISP).
	 and
	   2) The displacement value in abs is multiplied by two
	      for SW-sized operations, and by four for SL-size.

	This gives nine possible variations.
      */

    case X (OP_INDEXB, SB):
    case X (OP_INDEXB, SW):
    case X (OP_INDEXB, SL):
    case X (OP_INDEXW, SB):
    case X (OP_INDEXW, SW):
    case X (OP_INDEXW, SL):
    case X (OP_INDEXL, SB):
    case X (OP_INDEXL, SW):
    case X (OP_INDEXL, SL):
      t = GET_L_REG (rn);
      switch (OP_KIND (arg->type)) {
      case OP_INDEXB:	t &= 0xff;	break;
      case OP_INDEXW:	t &= 0xffff;	break;
      case OP_INDEXL:
      default:		break;
      }
      switch (OP_SIZE (arg->type)) {
      case SB:
	*val = GET_MEMORY_B ((t * 1 + abs) & h8_get_mask (sd));
	break;
      case SW:
	*val = GET_MEMORY_W ((t * 2 + abs) & h8_get_mask (sd));
	break;
      case SL:
	*val = GET_MEMORY_L ((t * 4 + abs) & h8_get_mask (sd));
	break;
      }
      break;

    case X (OP_LOWREG, SB):
      *val = GET_L_REG (rn) & 0xff;
      break;
    case X (OP_LOWREG, SW):
      *val = GET_L_REG (rn) & 0xffff; 
      break;

    case X (OP_REG, SB):	/* Register direct, byte.  */
      *val = GET_B_REG (rn);
      break;
    case X (OP_REG, SW):	/* Register direct, word.  */
      *val = GET_W_REG (rn);
      break;
    case X (OP_REG, SL):	/* Register direct, long.  */
      *val = GET_L_REG (rn);
      break;
    case X (OP_IMM, SB):	/* Immediate, byte.  */
    case X (OP_IMM, SW):	/* Immediate, word.  */
    case X (OP_IMM, SL):	/* Immediate, long.  */
      *val = abs;
      break;
    case X (OP_POSTINC, SB):	/* Register indirect w/post-incr: byte.  */
      t = GET_L_REG (rn);
      t &= h8_get_mask (sd);
      r = GET_MEMORY_B (t);
      if (!twice)
	t += 1;
      t = t & h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = r;
      break;
    case X (OP_POSTINC, SW):	/* Register indirect w/post-incr: word.  */
      t = GET_L_REG (rn);
      t &= h8_get_mask (sd);
      r = GET_MEMORY_W (t);
      if (!twice)
	t += 2;
      t = t & h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = r;
      break;
    case X (OP_POSTINC, SL):	/* Register indirect w/post-incr: long.  */
      t = GET_L_REG (rn);
      t &= h8_get_mask (sd);
      r = GET_MEMORY_L (t);
      if (!twice)
	t += 4;
      t = t & h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = r;
      break;

    case X (OP_POSTDEC, SB):	/* Register indirect w/post-decr: byte.  */
      t = GET_L_REG (rn);
      t &= h8_get_mask (sd);
      r = GET_MEMORY_B (t);
      if (!twice)
	t -= 1;
      t = t & h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = r;
      break;
    case X (OP_POSTDEC, SW):	/* Register indirect w/post-decr: word.  */
      t = GET_L_REG (rn);
      t &= h8_get_mask (sd);
      r = GET_MEMORY_W (t);
      if (!twice)
	t -= 2;
      t = t & h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = r;
      break;
    case X (OP_POSTDEC, SL):	/* Register indirect w/post-decr: long.  */
      t = GET_L_REG (rn);
      t &= h8_get_mask (sd);
      r = GET_MEMORY_L (t);
      if (!twice)
	t -= 4;
      t = t & h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = r;
      break;

    case X (OP_PREDEC, SB):	/* Register indirect w/pre-decr: byte.  */
      t = GET_L_REG (rn) - 1;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = GET_MEMORY_B (t);
      break;
      
    case X (OP_PREDEC, SW):	/* Register indirect w/pre-decr: word.  */
      t = GET_L_REG (rn) - 2;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = GET_MEMORY_W (t);
      break;
      
    case X (OP_PREDEC, SL):	/* Register indirect w/pre-decr: long.  */
      t = GET_L_REG (rn) - 4;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = GET_MEMORY_L (t);
      break;
      
    case X (OP_PREINC, SB):	/* Register indirect w/pre-incr: byte.  */
      t = GET_L_REG (rn) + 1;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = GET_MEMORY_B (t);
      break;

    case X (OP_PREINC, SW):	/* Register indirect w/pre-incr: long.  */
      t = GET_L_REG (rn) + 2;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = GET_MEMORY_W (t);
      break;

    case X (OP_PREINC, SL):	/* Register indirect w/pre-incr: long.  */
      t = GET_L_REG (rn) + 4;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      *val = GET_MEMORY_L (t);
      break;

    case X (OP_DISP, SB):	/* Register indirect w/displacement: byte.  */
      t = GET_L_REG (rn) + abs;
      t &= h8_get_mask (sd);
      *val = GET_MEMORY_B (t);
      break;

    case X (OP_DISP, SW):	/* Register indirect w/displacement: word.  */
      t = GET_L_REG (rn) + abs;
      t &= h8_get_mask (sd);
      *val = GET_MEMORY_W (t);
      break;

    case X (OP_DISP, SL):	/* Register indirect w/displacement: long.  */
      t = GET_L_REG (rn) + abs;
      t &= h8_get_mask (sd);
      *val =GET_MEMORY_L (t);
      break;

    case X (OP_MEM, SL):	/* Absolute memory address, long.  */
      t = GET_MEMORY_L (abs);
      t &= h8_get_mask (sd);
      *val = t;
      break;

    case X (OP_MEM, SW):	/* Absolute memory address, word.  */
      t = GET_MEMORY_W (abs);
      t &= h8_get_mask (sd);
      *val = t;
      break;

    case X (OP_PCREL, SB):	/* PC relative (for jump, branch etc).  */
    case X (OP_PCREL, SW):
    case X (OP_PCREL, SL):
    case X (OP_PCREL, SN):
      *val = abs;
      break;

    case X (OP_MEM, SB):	/* Why isn't this implemented?  */
    default:
      sim_engine_set_run_state (sd, sim_stopped, SIGSEGV);
      return -1;
    }
  return 0;	/* Success.  */
}

/* Normal fetch.  */

static int
fetch (SIM_DESC sd, ea_type *arg, int *val)
{
  return fetch_1 (sd, arg, val, 0);
}

/* Fetch which will be followed by a store to the same location.
   The difference being that we don't want to do a post-increment
   or post-decrement at this time: we'll do it when we store.  */

static int
fetch2 (SIM_DESC sd, ea_type *arg, int *val)
{
  return fetch_1 (sd, arg, val, 1);
}

/* Simulate a memory store.
   Return 0 for success, -1 for failure.
*/

static int
store_1 (SIM_DESC sd, ea_type *arg, int n, int twice)
{
  int rn = arg->reg;
  int abs = arg->literal;
  int t;

  switch (arg->type)
    {
      /* Indexed register plus displacement mode:

	 This new family of addressing modes are similar to OP_DISP
	 (register plus displacement), with two differences:
	   1) INDEXB uses only the least significant byte of the register,
	      INDEXW uses only the least significant word, and
	      INDEXL uses the entire register (just like OP_DISP).
	 and
	   2) The displacement value in abs is multiplied by two
	      for SW-sized operations, and by four for SL-size.

	This gives nine possible variations.
      */

    case X (OP_INDEXB, SB):
    case X (OP_INDEXB, SW):
    case X (OP_INDEXB, SL):
    case X (OP_INDEXW, SB):
    case X (OP_INDEXW, SW):
    case X (OP_INDEXW, SL):
    case X (OP_INDEXL, SB):
    case X (OP_INDEXL, SW):
    case X (OP_INDEXL, SL):
      t = GET_L_REG (rn);
      switch (OP_KIND (arg->type)) {
      case OP_INDEXB:	t &= 0xff;	break;
      case OP_INDEXW:	t &= 0xffff;	break;
      case OP_INDEXL:
      default:		break;
      }
      switch (OP_SIZE (arg->type)) {
      case SB:
	SET_MEMORY_B ((t * 1 + abs) & h8_get_mask (sd), n);
	break;
      case SW:
	SET_MEMORY_W ((t * 2 + abs) & h8_get_mask (sd), n);
	break;
      case SL:
	SET_MEMORY_L ((t * 4 + abs) & h8_get_mask (sd), n);
	break;
      }
      break;

    case X (OP_REG, SB):	/* Register direct, byte.  */
      SET_B_REG (rn, n);
      break;
    case X (OP_REG, SW):	/* Register direct, word.  */
      SET_W_REG (rn, n);
      break;
    case X (OP_REG, SL):	/* Register direct, long.  */
      SET_L_REG (rn, n);
      break;

    case X (OP_PREDEC, SB):	/* Register indirect w/pre-decr, byte.  */
      t = GET_L_REG (rn);
      if (!twice)
	t -= 1;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      SET_MEMORY_B (t, n);

      break;
    case X (OP_PREDEC, SW):	/* Register indirect w/pre-decr, word.  */
      t = GET_L_REG (rn);
      if (!twice)
	t -= 2;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      SET_MEMORY_W (t, n);
      break;

    case X (OP_PREDEC, SL):	/* Register indirect w/pre-decr, long.  */
      t = GET_L_REG (rn);
      if (!twice)
	t -= 4;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      SET_MEMORY_L (t, n);
      break;

    case X (OP_PREINC, SB):	/* Register indirect w/pre-incr, byte.  */
      t = GET_L_REG (rn);
      if (!twice)
	t += 1;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      SET_MEMORY_B (t, n);

      break;
    case X (OP_PREINC, SW):	/* Register indirect w/pre-incr, word.  */
      t = GET_L_REG (rn);
      if (!twice)
	t += 2;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      SET_MEMORY_W (t, n);
      break;

    case X (OP_PREINC, SL):	/* Register indirect w/pre-incr, long.  */
      t = GET_L_REG (rn);
      if (!twice)
	t += 4;
      t &= h8_get_mask (sd);
      SET_L_REG (rn, t);
      SET_MEMORY_L (t, n);
      break;

    case X (OP_POSTDEC, SB):	/* Register indirect w/post-decr, byte.  */
      t = GET_L_REG (rn) & h8_get_mask (sd);
      SET_MEMORY_B (t, n);
      SET_L_REG (rn, t - 1);
      break;

    case X (OP_POSTDEC, SW):	/* Register indirect w/post-decr, word.  */
      t = GET_L_REG (rn) & h8_get_mask (sd);
      SET_MEMORY_W (t, n);
      SET_L_REG (rn, t - 2);
      break;

    case X (OP_POSTDEC, SL):	/* Register indirect w/post-decr, long.  */
      t = GET_L_REG (rn) & h8_get_mask (sd);
      SET_MEMORY_L (t, n);
      SET_L_REG (rn, t - 4);
      break;

    case X (OP_POSTINC, SB):	/* Register indirect w/post-incr, byte.  */
      t = GET_L_REG (rn) & h8_get_mask (sd);
      SET_MEMORY_B (t, n);
      SET_L_REG (rn, t + 1);
      break;

    case X (OP_POSTINC, SW):	/* Register indirect w/post-incr, word.  */
      t = GET_L_REG (rn) & h8_get_mask (sd);
      SET_MEMORY_W (t, n);
      SET_L_REG (rn, t + 2);
      break;

    case X (OP_POSTINC, SL):	/* Register indirect w/post-incr, long.  */
      t = GET_L_REG (rn) & h8_get_mask (sd);
      SET_MEMORY_L (t, n);
      SET_L_REG (rn, t + 4);
      break;

    case X (OP_DISP, SB):	/* Register indirect w/displacement, byte.  */
      t = GET_L_REG (rn) + abs;
      t &= h8_get_mask (sd);
      SET_MEMORY_B (t, n);
      break;

    case X (OP_DISP, SW):	/* Register indirect w/displacement, word.  */
      t = GET_L_REG (rn) + abs;
      t &= h8_get_mask (sd);
      SET_MEMORY_W (t, n);
      break;

    case X (OP_DISP, SL):	/* Register indirect w/displacement, long.  */
      t = GET_L_REG (rn) + abs;
      t &= h8_get_mask (sd);
      SET_MEMORY_L (t, n);
      break;


    case X (OP_MEM, SB):	/* Why isn't this implemented?  */
    case X (OP_MEM, SW):	/* Why isn't this implemented?  */
    case X (OP_MEM, SL):	/* Why isn't this implemented?  */
    default:
      sim_engine_set_run_state (sd, sim_stopped, SIGSEGV);
      return -1;
    }
  return 0;
}

/* Normal store.  */

static int
store (SIM_DESC sd, ea_type *arg, int n)
{
  return store_1 (sd, arg, n, 0);
}

/* Store which follows a fetch from the same location.
   The difference being that we don't want to do a pre-increment
   or pre-decrement at this time: it was already done when we fetched.  */

static int
store2 (SIM_DESC sd, ea_type *arg, int n)
{
  return store_1 (sd, arg, n, 1);
}

static union
{
  short int i;
  struct
    {
      char low;
      char high;
    }
  u;
} littleendian;

/* Flag to be set whenever a new SIM_DESC object is created.  */
static int init_pointers_needed = 1;

static void
init_pointers (SIM_DESC sd)
{
  if (init_pointers_needed)
    {
      int i;

      littleendian.i = 1;

      if (h8300smode)
	memory_size = H8300S_MSIZE;
      else if (h8300hmode)
	memory_size = H8300H_MSIZE;
      else
	memory_size = H8300_MSIZE;
      /* `msize' must be a power of two.  */
      if ((memory_size & (memory_size - 1)) != 0)
	{
	  (*sim_callback->printf_filtered) 
	    (sim_callback,
	     "init_pointers: bad memory size %d, defaulting to %d.\n", 
	     memory_size, memory_size = H8300S_MSIZE);
	}

      if (h8_get_memory_buf (sd))
	free (h8_get_memory_buf (sd));
      if (h8_get_cache_idx_buf (sd))
	free (h8_get_cache_idx_buf (sd));
      if (h8_get_eightbit_buf (sd))
	free (h8_get_eightbit_buf (sd));

      h8_set_memory_buf (sd, (unsigned char *) 
			 calloc (sizeof (char), memory_size));
      h8_set_cache_idx_buf (sd, (unsigned short *) 
			    calloc (sizeof (short), memory_size));
      sd->memory_size = memory_size;
      h8_set_eightbit_buf (sd, (unsigned char *) calloc (sizeof (char), 256));

      h8_set_mask (sd, memory_size - 1);

      memset (h8_get_reg_buf (sd), 0, sizeof (((STATE_CPU (sd, 0))->regs)));

      for (i = 0; i < 8; i++)
	{
	  /* FIXME: rewrite using local buffer.  */
	  unsigned char *p = (unsigned char *) (h8_get_reg_buf (sd) + i);
	  unsigned char *e = (unsigned char *) (h8_get_reg_buf (sd) + i + 1);
	  unsigned short *q = (unsigned short *) (h8_get_reg_buf (sd) + i);
	  unsigned short *u = (unsigned short *) (h8_get_reg_buf (sd) + i + 1);
	  h8_set_reg (sd, i, 0x00112233);

	  while (p < e)
	    {
	      if (*p == 0x22)
		  breg[i] = p;
	      if (*p == 0x33)
		  breg[i + 8] = p;
	      if (*p == 0x11)
		breg[i + 16] = p;
	      if (*p == 0x00)
		breg[i + 24] = p;
	      p++;
	    }

	  wreg[i] = wreg[i + 8] = 0;
	  while (q < u)
	    {
	      if (*q == 0x2233)
		{
		  wreg[i] = q;
		}
	      if (*q == 0x0011)
		{
		  wreg[i + 8] = q;
		}
	      q++;
	    }

	  if (wreg[i] == 0 || wreg[i + 8] == 0)
	    (*sim_callback->printf_filtered) (sim_callback, 
					      "init_pointers: internal error.\n");

	  h8_set_reg (sd, i, 0);
	  lreg[i] = h8_get_reg_buf (sd) + i;
	}

      /* Note: sim uses pseudo-register ZERO as a zero register.  */
      lreg[ZERO_REGNUM] = h8_get_reg_buf (sd) + ZERO_REGNUM;
      init_pointers_needed = 0;

      /* Initialize the seg registers.  */
      if (!sd->sim_cache)
	set_simcache_size (sd, CSIZE);
    }
}

/* Grotty global variable for use by control_c signal handler.  */
static SIM_DESC control_c_sim_desc;

static void
control_c (int sig)
{
  sim_engine_set_run_state (control_c_sim_desc, sim_stopped, SIGINT);
}

int
sim_stop (SIM_DESC sd)
{
  /* FIXME: use a real signal value.  */
  sim_engine_set_run_state (sd, sim_stopped, SIGINT);
  return 1;
}

#define OBITOP(name, f, s, op) 			\
case O (name, SB):				\
{						\
  int m, tmp;					\
	 					\
  if (f)					\
    if (fetch (sd, &code->dst, &ea))		\
      goto end;					\
  if (fetch (sd, &code->src, &tmp))		\
    goto end;					\
  m = 1 << tmp;					\
  op;						\
  if (s)					\
    if (store (sd, &code->dst,ea))		\
      goto end;					\
  goto next;					\
}

void
sim_resume (SIM_DESC sd, int step, int siggnal)
{
  static int init1;
  int cycles = 0;
  int insts = 0;
  int tick_start = get_now ();
  void (*prev) ();
  int poll_count = 0;
  int res;
  int tmp;
  int rd;
  int ea;
  int bit;
  int pc;
  int c, nz, v, n, u, h, ui, intMaskBit;
  int trace, intMask;
  int oldmask;
  enum sim_stop reason;
  int sigrc;

  init_pointers (sd);

  control_c_sim_desc = sd;
  prev = signal (SIGINT, control_c);

  if (step)
    {
      sim_engine_set_run_state (sd, sim_stopped, SIGTRAP);
    }
  else
    {
      sim_engine_set_run_state (sd, sim_running, 0);
    }

  pc = h8_get_pc (sd);

  /* The PC should never be odd.  */
  if (pc & 0x1)
    {
      sim_engine_set_run_state (sd, sim_stopped, SIGBUS);
      return;
    }

  /* Get Status Register (flags).  */
  c = (h8_get_ccr (sd) >> 0) & 1;
  v = (h8_get_ccr (sd) >> 1) & 1;
  nz = !((h8_get_ccr (sd) >> 2) & 1);
  n = (h8_get_ccr (sd) >> 3) & 1;
  u = (h8_get_ccr (sd) >> 4) & 1;
  h = (h8_get_ccr (sd) >> 5) & 1;
  ui = ((h8_get_ccr (sd) >> 6) & 1);
  intMaskBit = (h8_get_ccr (sd) >> 7) & 1;

  if (h8300smode)	/* Get exr.  */
    {
      trace = (h8_get_exr (sd) >> 7) & 1;
      intMask = h8_get_exr (sd) & 7;
    }

  oldmask = h8_get_mask (sd);
  if (!h8300hmode)
    h8_set_mask (sd, 0xffff);
  do
    {
      unsigned short cidx;
      decoded_inst *code;

    top:
      cidx = h8_get_cache_idx (sd, pc);
      if (cidx == (unsigned short) -1 ||
	  cidx >= sd->sim_cache_size)
	goto illegal;
	  
      code = sd->sim_cache + cidx;

#if ADEBUG
      if (debug)
	{
	  printf ("%x %d %s\n", pc, code->opcode,
		  code->op ? code->op->name : "**");
	}
      h8_increment_stats (sd, code->opcode);
#endif

      if (code->opcode)
	{
	  cycles += code->cycles;
	  insts++;
	}

      switch (code->opcode)
	{
	case 0:
	  /*
	   * This opcode is a fake for when we get to an
	   * instruction which hasnt been compiled
	   */
	  compile (sd, pc);
	  goto top;
	  break;

	case O (O_MOVAB, SL):
	case O (O_MOVAW, SL):
	case O (O_MOVAL, SL):
	  /* 1) Evaluate 2nd argument (dst).
	     2) Mask / zero extend according to whether 1st argument (src)
	        is INDEXB, INDEXW, or INDEXL.
	     3) Left-shift the result by 0, 1 or 2, according to size of mova
	        (mova/b, mova/w, mova/l).
	     4) Add literal value of 1st argument (src).
	     5) Store result in 3rd argument (op3).

	  */
	  if (fetch (sd, &code->dst, &ea))
	    goto end;

	  switch (OP_KIND (code->src.type)) {
	  case OP_INDEXB:    ea = ea & 0xff;		break;
	  case OP_INDEXW:    ea = ea & 0xffff;		break;
	  case OP_INDEXL:    				break;
	  default:	     goto illegal;
	  }

	  switch (code->opcode) {
	  case O (O_MOVAB, SL):	    			break;
	  case O (O_MOVAW, SL):	    ea = ea << 1;	break;
	  case O (O_MOVAL, SL):     ea = ea << 2;	break;
	  default: 		    goto illegal;
	  }
	  
	  ea = ea + code->src.literal;

	  if (store (sd, &code->op3, ea))
	    goto end;

	  goto next;	  

	case O (O_SUBX, SB):	/* subx, extended sub */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = -(ea + C);
	  res = rd + ea;
	  goto alu8;

	case O (O_SUBX, SW):	/* subx, extended sub */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = -(ea + C);
	  res = rd + ea;
	  goto alu16;

	case O (O_SUBX, SL):	/* subx, extended sub */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = -(ea + C);
	  res = rd + ea;
	  goto alu32;

	case O (O_ADDX, SB):	/* addx, extended add */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = ea + C;
	  res = rd + ea;
	  goto alu8;

	case O (O_ADDX, SW):	/* addx, extended add */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = ea + C;
	  res = rd + ea;
	  goto alu16;

	case O (O_ADDX, SL):	/* addx, extended add */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = ea + C;
	  res = rd + ea;
	  goto alu32;

	case O (O_SUB, SB):		/* sub.b */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  ea = -ea;
	  res = rd + ea;
	  goto alu8;

	case O (O_SUB, SW):		/* sub.w */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  ea = -ea;
	  res = rd + ea;
	  goto alu16;

	case O (O_SUB, SL):		/* sub.l */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  ea = -ea;
	  res = rd + ea;
	  goto alu32;

	case O (O_NEG, SB):		/* neg.b */
	  /* Fetch ea.  */
	  if (fetch2 (sd, &code->src, &ea)) 
	    goto end;
	  ea = -ea;
	  rd = 0;
	  res = rd + ea;
	  goto alu8;

	case O (O_NEG, SW):		/* neg.w */
	  /* Fetch ea.  */
	  if (fetch2 (sd, &code->src, &ea)) 
	    goto end;
	  ea = -ea;
	  rd = 0;
	  res = rd + ea;
	  goto alu16;

	case O (O_NEG, SL):		/* neg.l */
	  /* Fetch ea.  */
	  if (fetch2 (sd, &code->src, &ea)) 
	    goto end;
	  ea = -ea;
	  rd = 0;
	  res = rd + ea;
	  goto alu32;

	case O (O_ADD, SB):		/* add.b */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  res = rd + ea;
	  goto alu8;

	case O (O_ADD, SW):		/* add.w */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  res = rd + ea;
	  goto alu16;

	case O (O_ADD, SL):		/* add.l */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  res = rd + ea;
	  goto alu32;

	case O (O_AND, SB):		/* and.b */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd & ea;
	  goto log8;

	case O (O_AND, SW):		/* and.w */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd & ea;
	  goto log16;

	case O (O_AND, SL):		/* and.l */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd & ea;
	  goto log32;

	case O (O_OR, SB):		/* or.b */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd | ea;
	  goto log8;

	case O (O_OR, SW):		/* or.w */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd | ea;
	  goto log16;

	case O (O_OR, SL):		/* or.l */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd | ea;
	  goto log32;

	case O (O_XOR, SB):		/* xor.b */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd ^ ea;
	  goto log8;

	case O (O_XOR, SW):		/* xor.w */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd ^ ea;
	  goto log16;

	case O (O_XOR, SL):		/* xor.l */
	  /* Fetch rd and ea.  */
	  if (fetch (sd, &code->src, &ea) || fetch2 (sd, &code->dst, &rd)) 
	    goto end;
	  res = rd ^ ea;
	  goto log32;

	case O (O_MOV, SB):
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto just_flags_log8;
	case O (O_MOV, SW):
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto just_flags_log16;
	case O (O_MOV, SL):
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto just_flags_log32;

	case O (O_MOVMD, SB):		/* movsd.b */
	  ea = GET_W_REG (4);
	  if (ea == 0)
	    ea = 0x10000;

	  while (ea--)
	    {
	      rd = GET_MEMORY_B (GET_L_REG (5));
	      SET_MEMORY_B (GET_L_REG (6), rd);
	      SET_L_REG (5, GET_L_REG (5) + 1);
	      SET_L_REG (6, GET_L_REG (6) + 1);
	      SET_W_REG (4, ea);
	    }
	  goto next;

	case O (O_MOVMD, SW):		/* movsd.b */
	  ea = GET_W_REG (4);
	  if (ea == 0)
	    ea = 0x10000;

	  while (ea--)
	    {
	      rd = GET_MEMORY_W (GET_L_REG (5));
	      SET_MEMORY_W (GET_L_REG (6), rd);
	      SET_L_REG (5, GET_L_REG (5) + 2);
	      SET_L_REG (6, GET_L_REG (6) + 2);
	      SET_W_REG (4, ea);
	    }
	  goto next;

	case O (O_MOVMD, SL):		/* movsd.b */
	  ea = GET_W_REG (4);
	  if (ea == 0)
	    ea = 0x10000;

	  while (ea--)
	    {
	      rd = GET_MEMORY_L (GET_L_REG (5));
	      SET_MEMORY_L (GET_L_REG (6), rd);
	      SET_L_REG (5, GET_L_REG (5) + 4);
	      SET_L_REG (6, GET_L_REG (6) + 4);
	      SET_W_REG (4, ea);
	    }
	  goto next;

	case O (O_MOVSD, SB):		/* movsd.b */
	  /* This instruction implements strncpy, with a conditional branch.
	     r4 contains n, r5 contains src, and r6 contains dst.
	     The 16-bit displacement operand is added to the pc
	     if and only if the end of string is reached before
	     n bytes are transferred.  */

	  ea = GET_L_REG (4) & 0xffff;
	  if (ea == 0)
	    ea = 0x10000;

	  while (ea--)
	    {
	      rd = GET_MEMORY_B (GET_L_REG (5));
	      SET_MEMORY_B (GET_L_REG (6), rd);
	      SET_L_REG (5, GET_L_REG (5) + 1);
	      SET_L_REG (6, GET_L_REG (6) + 1);
	      SET_W_REG (4, ea); 
	      if (rd == 0)
		goto condtrue;
	    }
	  goto next;

	case O (O_EEPMOV, SB):		/* eepmov.b */
	case O (O_EEPMOV, SW):		/* eepmov.w */
	  if (h8300hmode || h8300smode)
	    {
	      register unsigned char *_src, *_dst;
	      unsigned int count = ((code->opcode == O (O_EEPMOV, SW))
				    ? h8_get_reg (sd, R4_REGNUM) & 0xffff
				    : h8_get_reg (sd, R4_REGNUM) & 0xff);

	      _src = (h8_get_reg (sd, R5_REGNUM) < memory_size
		      ? h8_get_memory_buf   (sd) + h8_get_reg (sd, R5_REGNUM)
		      : h8_get_eightbit_buf (sd) + 
		       (h8_get_reg (sd, R5_REGNUM) & 0xff));
	      if ((_src + count) >= (h8_get_memory_buf (sd) + memory_size))
		{
		  if ((_src + count) >= (h8_get_eightbit_buf (sd) + 0x100))
		    goto illegal;
		}
	      _dst = (h8_get_reg (sd, R6_REGNUM) < memory_size
		      ? h8_get_memory_buf   (sd) + h8_get_reg (sd, R6_REGNUM)
		      : h8_get_eightbit_buf (sd) + 
		       (h8_get_reg (sd, R6_REGNUM) & 0xff));

	      if ((_dst + count) >= (h8_get_memory_buf (sd) + memory_size))
		{
		  if ((_dst + count) >= (h8_get_eightbit_buf (sd) + 0x100))
		    goto illegal;
		}
	      memcpy (_dst, _src, count);

	      h8_set_reg (sd, R5_REGNUM, h8_get_reg (sd, R5_REGNUM) + count);
	      h8_set_reg (sd, R6_REGNUM, h8_get_reg (sd, R6_REGNUM) + count);
	      h8_set_reg (sd, R4_REGNUM, h8_get_reg (sd, R4_REGNUM) &
			  ((code->opcode == O (O_EEPMOV, SW))
			  ? (~0xffff) : (~0xff)));
	      cycles += 2 * count;
	      goto next;
	    }
	  goto illegal;

	case O (O_ADDS, SL):		/* adds (.l) */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  SET_L_REG (code->dst.reg,
		     GET_L_REG (code->dst.reg)
		     + code->src.literal);

	  goto next;

	case O (O_SUBS, SL):		/* subs (.l) */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  SET_L_REG (code->dst.reg,
		     GET_L_REG (code->dst.reg)
		     - code->src.literal);
	  goto next;

	case O (O_CMP, SB):		/* cmp.b */
	  if (fetch (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = -ea;
	  res = rd + ea;
	  goto just_flags_alu8;

	case O (O_CMP, SW):		/* cmp.w */
	  if (fetch (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = -ea;
	  res = rd + ea;
	  goto just_flags_alu16;

	case O (O_CMP, SL):		/* cmp.l */
	  if (fetch (sd, &code->dst, &rd))
	    goto end;
	  if (fetch (sd, &code->src, &ea))
	    goto end;
	  ea = -ea;
	  res = rd + ea;
	  goto just_flags_alu32;

	case O (O_DEC, SB):		/* dec.b */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  rd = GET_B_REG (code->src.reg);
	  ea = -1;
	  res = rd + ea;
	  SET_B_REG (code->src.reg, res);
	  goto just_flags_inc8;

	case O (O_DEC, SW):		/* dec.w */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  rd = GET_W_REG (code->dst.reg);
	  ea = -code->src.literal;
	  res = rd + ea;
	  SET_W_REG (code->dst.reg, res);
	  goto just_flags_inc16;

	case O (O_DEC, SL):		/* dec.l */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  rd = GET_L_REG (code->dst.reg);
	  ea = -code->src.literal;
	  res = rd + ea;
	  SET_L_REG (code->dst.reg, res);
	  goto just_flags_inc32;

	case O (O_INC, SB):		/* inc.b */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  rd = GET_B_REG (code->src.reg);
	  ea = 1;
	  res = rd + ea;
	  SET_B_REG (code->src.reg, res);
	  goto just_flags_inc8;

	case O (O_INC, SW):		/* inc.w */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  rd = GET_W_REG (code->dst.reg);
	  ea = code->src.literal;
	  res = rd + ea;
	  SET_W_REG (code->dst.reg, res);
	  goto just_flags_inc16;

	case O (O_INC, SL):		/* inc.l */
	  /* FIXME fetch.
	   * This insn only uses register operands, but still
	   * it would be cleaner to use fetch and store...  */	  
	  rd = GET_L_REG (code->dst.reg);
	  ea = code->src.literal;
	  res = rd + ea;
	  SET_L_REG (code->dst.reg, res);
	  goto just_flags_inc32;

	case O (O_LDC, SB):		/* ldc.b */
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  goto setc;

	case O (O_LDC, SW):		/* ldc.w */
	  if (fetch (sd, &code->src, &res))
	    goto end;

	  /* Word operand, value from MSB, must be shifted.  */
	  res >>= 8;
	  goto setc;

	case O (O_LDC, SL):		/* ldc.l */
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  switch (code->dst.type) {
	  case X (OP_SBR, SL):
	    h8_set_sbr (sd, res);
	    break;
	  case X (OP_VBR, SL):
	    h8_set_vbr (sd, res);
	    break;
	  default:
	    goto illegal;
	  }
	  goto next;

	case O (O_STC, SW):		/* stc.w */
	case O (O_STC, SB):		/* stc.b */
	  if (code->src.type == X (OP_CCR, SB))
	    {
	      BUILDSR (sd);
	      res = h8_get_ccr (sd);
	    }
	  else if (code->src.type == X (OP_EXR, SB) && h8300smode)
	    {
	      if (h8300smode)
		h8_set_exr (sd, (trace << 7) | intMask);
	      res = h8_get_exr (sd);
	    }
	  else
	    goto illegal;

	  /* Word operand, value to MSB, must be shifted.  */
	  if (code->opcode == X (O_STC, SW))
	    res <<= 8;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;
	case O (O_STC, SL):		/* stc.l */
	  switch (code->src.type) {
	  case X (OP_SBR, SL):
	    res = h8_get_sbr (sd);
	    break;
	  case X (OP_VBR, SL):
	    res = h8_get_vbr (sd);
	    break;
	  default:
	    goto illegal;
	  }
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_ANDC, SB):		/* andc.b */
	  if (code->dst.type == X (OP_CCR, SB))
	    {
	      BUILDSR (sd);
	      rd = h8_get_ccr (sd);
	    }
	  else if (code->dst.type == X (OP_EXR, SB) && h8300smode)
	    {
	      if (h8300smode)
		h8_set_exr (sd, (trace << 7) | intMask);
	      res = h8_get_exr (sd);
	    }
	  else
	    goto illegal;
	  ea = code->src.literal;
	  res = rd & ea;
	  goto setc;

	case O (O_ORC, SB):		/* orc.b */
	  if (code->dst.type == X (OP_CCR, SB))
	    {
	      BUILDSR (sd);
	      rd = h8_get_ccr (sd);
	    }
	  else if (code->dst.type == X (OP_EXR, SB) && h8300smode)
	    {
	      if (h8300smode)
		h8_set_exr (sd, (trace << 7) | intMask);
	      rd = h8_get_exr (sd);
	    }
	  else
	    goto illegal;
	  ea = code->src.literal;
	  res = rd | ea;
	  goto setc;

	case O (O_XORC, SB):		/* xorc.b */
	  if (code->dst.type == X (OP_CCR, SB))
	    {
	      BUILDSR (sd);
	      rd = h8_get_ccr (sd);
	    }
	  else if (code->dst.type == X (OP_EXR, SB) && h8300smode)
	    {
	      if (h8300smode)
		h8_set_exr (sd, (trace << 7) | intMask);
	      rd = h8_get_exr (sd);
	    }
	  else
	    goto illegal;
	  ea = code->src.literal;
	  res = rd ^ ea;
	  goto setc;

	case O (O_BRAS, SB):		/* bra/s  */
	  /* This is basically an ordinary branch, with a delay slot.  */
	  if (fetch (sd, &code->src, &res))
	    goto end;

	  if ((res & 1) == 0)
	    goto illegal;

	  res -= 1;

	  /* Execution continues at next instruction, but
	     delayed_branch is set up for next cycle.  */
	  h8_set_delayed_branch (sd, code->next_pc + res);
	  pc = code->next_pc;
	  goto end;

	case O (O_BRAB, SB):		/* bra rd.b */
	case O (O_BRAW, SW):		/* bra rd.w */
	case O (O_BRAL, SL):		/* bra erd.l */
	  if (fetch (sd, &code->src, &rd))
	    goto end;
	  switch (OP_SIZE (code->opcode)) {
	  case SB:	rd &= 0xff;		break;
	  case SW:	rd &= 0xffff;		break;
	  case SL:	rd &= 0xffffffff;	break;
	  }
	  pc = code->next_pc + rd;
	  goto end;

	case O (O_BRABC, SB):		/* bra/bc, branch if bit clear */
	case O (O_BRABS, SB):		/* bra/bs, branch if bit set   */
	case O (O_BSRBC, SB):		/* bsr/bc, call   if bit clear */
	case O (O_BSRBS, SB):		/* bsr/bs, call   if bit set   */
	  if (fetch (sd, &code->dst, &rd) ||
	      fetch (sd, &code->src, &bit))
	    goto end;

	  if (code->opcode == O (O_BRABC, SB) || /* branch if clear */
	      code->opcode == O (O_BSRBC, SB))	 /* call   if clear */
	    {
	      if ((rd & (1 << bit)))		/* no branch */
		goto next;
	    }
	  else					/* branch/call if set */
	    {
	      if (!(rd & (1 << bit)))		/* no branch */
		goto next;
	    }

	  if (fetch (sd, &code->op3, &res))	/* branch */
	    goto end;
	  pc = code->next_pc + res;

	  if (code->opcode == O (O_BRABC, SB) ||
	      code->opcode == O (O_BRABS, SB))	/* branch */
	    goto end;
	  else					/* call   */
	    goto call;

	case O (O_BRA, SN):
	case O (O_BRA, SL):
	case O (O_BRA, SW):
	case O (O_BRA, SB):		/* bra, branch always */
	  if (1)
	    goto condtrue;
	  goto next;

	case O (O_BRN, SB):		/* brn, ;-/  branch never? */
	  if (0)
	    goto condtrue;
	  goto next;

	case O (O_BHI, SB):		/* bhi */
	  if ((C || Z) == 0)
	    goto condtrue;
	  goto next;


	case O (O_BLS, SB):		/* bls */
	  if ((C || Z))
	    goto condtrue;
	  goto next;

	case O (O_BCS, SB):		/* bcs, branch if carry set */
	  if ((C == 1))
	    goto condtrue;
	  goto next;

	case O (O_BCC, SB):		/* bcc, branch if carry clear */
	  if ((C == 0))
	    goto condtrue;
	  goto next;

	case O (O_BEQ, SB):		/* beq, branch if zero set */
	  if (Z)
	    goto condtrue;
	  goto next;
	case O (O_BGT, SB):		/* bgt */
	  if (((Z || (N ^ V)) == 0))
	    goto condtrue;
	  goto next;

	case O (O_BLE, SB):		/* ble */
	  if (((Z || (N ^ V)) == 1))
	    goto condtrue;
	  goto next;

	case O (O_BGE, SB):		/* bge */
	  if ((N ^ V) == 0)
	    goto condtrue;
	  goto next;
	case O (O_BLT, SB):		/* blt */
	  if ((N ^ V))
	    goto condtrue;
	  goto next;
	case O (O_BMI, SB):		/* bmi */
	  if ((N))
	    goto condtrue;
	  goto next;
	case O (O_BNE, SB):		/* bne, branch if zero clear */
	  if ((Z == 0))
	    goto condtrue;
	  goto next;

	case O (O_BPL, SB):		/* bpl */
	  if (N == 0)
	    goto condtrue;
	  goto next;
	case O (O_BVC, SB):		/* bvc */
	  if ((V == 0))
	    goto condtrue;
	  goto next;
	case O (O_BVS, SB):		/* bvs */
	  if ((V == 1))
	    goto condtrue;
	  goto next;

	/* Trap for Command Line setup.  */
	case O (O_SYS_CMDLINE, SB):
	  {
	    int i = 0;		/* Loop counter.  */
	    int j = 0;		/* Loop counter.  */
	    int ind_arg_len = 0;	/* Length of each argument.  */
	    int no_of_args = 0;	/* The no. or cmdline args.  */
	    int current_location = 0;	/* Location of string.  */
	    int old_sp = 0;	/* The Initial Stack Pointer.  */
	    int no_of_slots = 0;	/* No. of slots required on the stack
					   for storing cmdline args.  */
	    int sp_move = 0;	/* No. of locations by which the stack needs
				   to grow.  */
	    int new_sp = 0;	/* The final stack pointer location passed
				   back.  */
	    int *argv_ptrs;	/* Pointers of argv strings to be stored.  */
	    int argv_ptrs_location = 0;	/* Location of pointers to cmdline
					   args on the stack.  */
	    int char_ptr_size = 0;	/* Size of a character pointer on
					   target machine.  */
	    int addr_cmdline = 0;	/* Memory location where cmdline has
					   to be stored.  */
	    int size_cmdline = 0;	/* Size of cmdline.  */

	    /* Set the address of 256 free locations where command line is
	       stored.  */
	    addr_cmdline = cmdline_location();
	    h8_set_reg (sd, 0, addr_cmdline);

	    /* Counting the no. of commandline arguments.  */
	    for (i = 0; h8_get_cmdline_arg (sd, i) != NULL; i++)
	      continue;

	    /* No. of arguments in the command line.  */
	    no_of_args = i;

	    /* Current location is just a temporary variable,which we are
	       setting to the point to the start of our commandline string.  */
	    current_location = addr_cmdline;

	    /* Allocating space for storing pointers of the command line
	       arguments.  */
	    argv_ptrs = (int *) malloc (sizeof (int) * no_of_args);

	    /* Setting char_ptr_size to the sizeof (char *) on the different
	       architectures.  */
	    if (h8300hmode || h8300smode)
	      {
		char_ptr_size = 4;
	      }
	    else
	      {
		char_ptr_size = 2;
	      }

	    for (i = 0; i < no_of_args; i++)
	      {
		ind_arg_len = 0;

		/* The size of the commandline argument.  */
		ind_arg_len = strlen (h8_get_cmdline_arg (sd, i) + 1);

		/* The total size of the command line string.  */
		size_cmdline += ind_arg_len;

		/* As we have only 256 bytes, we need to provide a graceful
		   exit. Anyways, a program using command line arguments 
		   where we cannot store all the command line arguments
		   given may behave unpredictably.  */
		if (size_cmdline >= 256)
		  {
		    h8_set_reg (sd, 0, 0);
		    goto next;
		  }
		else
		  {
		    /* current_location points to the memory where the next
		       commandline argument is stored.  */
		    argv_ptrs[i] = current_location;
		    for (j = 0; j < ind_arg_len; j++)
		      {
			SET_MEMORY_B ((current_location +
				       (sizeof (char) * j)),
				      *(h8_get_cmdline_arg (sd, i) + 
				       sizeof (char) * j));
		      }

		    /* Setting current_location to the starting of next
		       argument.  */
		    current_location += ind_arg_len;
		  }
	      }

	    /* This is the original position of the stack pointer.  */
	    old_sp = h8_get_reg (sd, SP_REGNUM);

	    /* We need space from the stack to store the pointers to argvs.  */
	    /* As we will infringe on the stack, we need to shift the stack
	       pointer so that the data is not overwritten. We calculate how
	       much space is required.  */
	    sp_move = (no_of_args) * (char_ptr_size);

	    /* The final position of stack pointer, we have thus taken some
	       space from the stack.  */
	    new_sp = old_sp - sp_move;

	    /* Temporary variable holding value where the argv pointers need
	       to be stored.  */
	    argv_ptrs_location = new_sp;

	    /* The argv pointers are stored at sequential locations. As per
	       the H8300 ABI.  */
	    for (i = 0; i < no_of_args; i++)
	      {
		/* Saving the argv pointer.  */
		if (h8300hmode || h8300smode)
		  {
		    SET_MEMORY_L (argv_ptrs_location, argv_ptrs[i]);
		  }
		else
		  {
		    SET_MEMORY_W (argv_ptrs_location, argv_ptrs[i]);
		  }
	
		/* The next location where the pointer to the next argv
		   string has to be stored.  */    
		argv_ptrs_location += char_ptr_size;
	      }

	    /* Required by POSIX, Setting 0x0 at the end of the list of argv
	       pointers.  */
	    if (h8300hmode || h8300smode)
	      {
		SET_MEMORY_L (old_sp, 0x0);
	      }
	    else
	      {
		SET_MEMORY_W (old_sp, 0x0);
	      }

	    /* Freeing allocated memory.  */
	    free (argv_ptrs);
	    for (i = 0; i <= no_of_args; i++)
	      {
		free (h8_get_cmdline_arg (sd, i));
	      }
	    free (h8_get_command_line (sd));

	    /* The no. of argv arguments are returned in Reg 0.  */
	    h8_set_reg (sd, 0, no_of_args);
	    /* The Pointer to argv in Register 1.  */
	    h8_set_reg (sd, 1, new_sp);
	    /* Setting the stack pointer to the new value.  */
	    h8_set_reg (sd, SP_REGNUM, new_sp);
	  }
	  goto next;

	  /* System call processing starts.  */
	case O (O_SYS_OPEN, SB):
	  {
	    int len = 0;	/* Length of filename.  */
	    char *filename;	/* Filename would go here.  */
	    char temp_char;	/* Temporary character */
	    int mode = 0;	/* Mode bits for the file.  */
	    int open_return;	/* Return value of open, file descriptor.  */
	    int i;		/* Loop counter */
	    int filename_ptr;	/* Pointer to filename in cpu memory.  */

	    /* Setting filename_ptr to first argument of open,  */
	    /* and trying to get mode.  */
	    if (h8300sxmode || h8300hmode || h8300smode)
	      {
		filename_ptr = GET_L_REG (0);
		mode = GET_MEMORY_L (h8_get_reg (sd, SP_REGNUM) + 4);
	      }
	    else
	      {
		filename_ptr = GET_W_REG (0);
		mode = GET_MEMORY_W (h8_get_reg (sd, SP_REGNUM) + 2);
	      }

	    /* Trying to find the length of the filename.  */
	    temp_char = GET_MEMORY_B (h8_get_reg (sd, 0));

	    len = 1;
	    while (temp_char != '\0')
	      {
		temp_char = GET_MEMORY_B (filename_ptr + len);
		len++;
	      }

	    /* Allocating space for the filename.  */
	    filename = (char *) malloc (sizeof (char) * len);

	    /* String copying the filename from memory.  */
	    for (i = 0; i < len; i++)
	      {
		temp_char = GET_MEMORY_B (filename_ptr + i);
		filename[i] = temp_char;
	      }

	    /* Callback to open and return the file descriptor.  */
	    open_return = sim_callback->open (sim_callback, filename, mode);

	    /* Return value in register 0.  */
	    h8_set_reg (sd, 0, open_return);

	    /* Freeing memory used for filename. */
	    free (filename);
	  }
	  goto next;

	case O (O_SYS_READ, SB):
	  {
	    char *char_ptr;	/* Where characters read would be stored.  */
	    int fd;		/* File descriptor */
	    int buf_size;	/* BUF_SIZE parameter in read.  */
	    int i = 0;		/* Temporary Loop counter */
	    int read_return = 0;	/* Return value from callback to
					   read.  */

	    fd = h8300hmode ? GET_L_REG (0) : GET_W_REG (0);
	    buf_size = h8300hmode ? GET_L_REG (2) : GET_W_REG (2);

	    char_ptr = (char *) malloc (sizeof (char) * buf_size);

	    /* Callback to read and return the no. of characters read.  */
	    read_return =
	      sim_callback->read (sim_callback, fd, char_ptr, buf_size);

	    /* The characters read are stored in cpu memory.  */
	    for (i = 0; i < buf_size; i++)
	      {
		SET_MEMORY_B ((h8_get_reg (sd, 1) + (sizeof (char) * i)),
			      *(char_ptr + (sizeof (char) * i)));
	      }

	    /* Return value in Register 0.  */
	    h8_set_reg (sd, 0, read_return);

	    /* Freeing memory used as buffer.  */
	    free (char_ptr);
	  }
	  goto next;

	case O (O_SYS_WRITE, SB):
	  {
	    int fd;		/* File descriptor */
	    char temp_char;	/* Temporary character */
	    int len;		/* Length of write, Parameter II to write.  */
	    int char_ptr;	/* Character Pointer, Parameter I of write.  */
	    char *ptr;		/* Where characters to be written are stored. 
				 */
	    int write_return;	/* Return value from callback to write.  */
	    int i = 0;		/* Loop counter */

	    fd = h8300hmode ? GET_L_REG (0) : GET_W_REG (0);
	    char_ptr = h8300hmode ? GET_L_REG (1) : GET_W_REG (1);
	    len = h8300hmode ? GET_L_REG (2) : GET_W_REG (2);

	    /* Allocating space for the characters to be written.  */
	    ptr = (char *) malloc (sizeof (char) * len);

	    /* Fetching the characters from cpu memory.  */
	    for (i = 0; i < len; i++)
	      {
		temp_char = GET_MEMORY_B (char_ptr + i);
		ptr[i] = temp_char;
	      }

	    /* Callback write and return the no. of characters written.  */
	    write_return = sim_callback->write (sim_callback, fd, ptr, len);

	    /* Return value in Register 0.  */
	    h8_set_reg (sd, 0, write_return);

	    /* Freeing memory used as buffer.  */
	    free (ptr);
	  }
	  goto next;

	case O (O_SYS_LSEEK, SB):
	  {
	    int fd;		/* File descriptor */
	    int offset;		/* Offset */
	    int origin;		/* Origin */
	    int lseek_return;	/* Return value from callback to lseek.  */

	    fd = h8300hmode ? GET_L_REG (0) : GET_W_REG (0);
	    offset = h8300hmode ? GET_L_REG (1) : GET_W_REG (1);
	    origin = h8300hmode ? GET_L_REG (2) : GET_W_REG (2);

	    /* Callback lseek and return offset.  */
	    lseek_return =
	      sim_callback->lseek (sim_callback, fd, offset, origin);

	    /* Return value in register 0.  */
	    h8_set_reg (sd, 0, lseek_return);
	  }
	  goto next;

	case O (O_SYS_CLOSE, SB):
	  {
	    int fd;		/* File descriptor */
	    int close_return;	/* Return value from callback to close.  */

	    fd = h8300hmode ? GET_L_REG (0) : GET_W_REG (0);

	    /* Callback close and return.  */
	    close_return = sim_callback->close (sim_callback, fd);

	    /* Return value in register 0.  */
	    h8_set_reg (sd, 0, close_return);
	  }
	  goto next;

	case O (O_SYS_FSTAT, SB):
	  {
	    int fd;		/* File descriptor */
	    struct stat stat_rec;	/* Stat record */
	    int fstat_return;	/* Return value from callback to stat.  */
	    int stat_ptr;	/* Pointer to stat record.  */
	    char *temp_stat_ptr;	/* Temporary stat_rec pointer.  */

	    fd = h8300hmode ? GET_L_REG (0) : GET_W_REG (0);

	    /* Setting stat_ptr to second argument of stat.  */
	    stat_ptr = h8300hmode ? GET_L_REG (1) : GET_W_REG (1);

	    /* Callback stat and return.  */
	    fstat_return = sim_callback->fstat (sim_callback, fd, &stat_rec);

	    /* Have stat_ptr point to starting of stat_rec.  */
	    temp_stat_ptr = (char *) (&stat_rec);

	    /* Setting up the stat structure returned.  */
	    SET_MEMORY_W (stat_ptr, stat_rec.st_dev);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_ino);
	    stat_ptr += 2;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_mode);
	    stat_ptr += 4;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_nlink);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_uid);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_gid);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_rdev);
	    stat_ptr += 2;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_size);
	    stat_ptr += 4;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_atime);
	    stat_ptr += 8;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_mtime);
	    stat_ptr += 8;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_ctime);

	    /* Return value in register 0.  */
	    h8_set_reg (sd, 0, fstat_return);
	  }
	  goto next;

	case O (O_SYS_STAT, SB):
	  {
	    int len = 0;	/* Length of filename.  */
	    char *filename;	/* Filename would go here.  */
	    char temp_char;	/* Temporary character */
	    int filename_ptr;	/* Pointer to filename in cpu memory.  */
	    struct stat stat_rec;	/* Stat record */
	    int stat_return;	/* Return value from callback to stat */
	    int stat_ptr;	/* Pointer to stat record.  */
	    char *temp_stat_ptr;	/* Temporary stat_rec pointer.  */
	    int i = 0;		/* Loop Counter */

	    /* Setting filename_ptr to first argument of open.  */
	    filename_ptr = h8300hmode ? GET_L_REG (0) : GET_W_REG (0);

	    /* Trying to find the length of the filename.  */
	    temp_char = GET_MEMORY_B (h8_get_reg (sd, 0));

	    len = 1;
	    while (temp_char != '\0')
	      {
		temp_char = GET_MEMORY_B (filename_ptr + len);
		len++;
	      }

	    /* Allocating space for the filename.  */
	    filename = (char *) malloc (sizeof (char) * len);

	    /* String copying the filename from memory.  */
	    for (i = 0; i < len; i++)
	      {
		temp_char = GET_MEMORY_B (filename_ptr + i);
		filename[i] = temp_char;
	      }

	    /* Setting stat_ptr to second argument of stat.  */
	    /* stat_ptr = h8_get_reg (sd, 1); */
	    stat_ptr = h8300hmode ? GET_L_REG (1) : GET_W_REG (1);

	    /* Callback stat and return.  */
	    stat_return =
	      sim_callback->stat (sim_callback, filename, &stat_rec);

	    /* Have stat_ptr point to starting of stat_rec.  */
	    temp_stat_ptr = (char *) (&stat_rec);
 
	    /* Freeing memory used for filename.  */
	    free (filename);
 
	    /* Setting up the stat structure returned.  */
	    SET_MEMORY_W (stat_ptr, stat_rec.st_dev);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_ino);
	    stat_ptr += 2;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_mode);
	    stat_ptr += 4;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_nlink);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_uid);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_gid);
	    stat_ptr += 2;
	    SET_MEMORY_W (stat_ptr, stat_rec.st_rdev);
	    stat_ptr += 2;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_size);
	    stat_ptr += 4;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_atime);
	    stat_ptr += 8;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_mtime);
	    stat_ptr += 8;
	    SET_MEMORY_L (stat_ptr, stat_rec.st_ctime);
 
	    /* Return value in register 0.  */
	    h8_set_reg (sd, 0, stat_return);
	  }
	  goto next;
	  /* End of system call processing.  */

	case O (O_NOT, SB):		/* not.b */
	  if (fetch2 (sd, &code->src, &rd))
	    goto end;
	  rd = ~rd; 
	  v = 0;
	  goto shift8;

	case O (O_NOT, SW):		/* not.w */
	  if (fetch2 (sd, &code->src, &rd))
	    goto end;
	  rd = ~rd; 
	  v = 0;
	  goto shift16;

	case O (O_NOT, SL):		/* not.l */
	  if (fetch2 (sd, &code->src, &rd))
	    goto end;
	  rd = ~rd; 
	  v = 0;
	  goto shift32;

	case O (O_SHLL, SB):	/* shll.b */
	case O (O_SHLR, SB):	/* shlr.b */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SB))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  if (code->opcode == O (O_SHLL, SB))
	    {
	      v = (ea > 8);
	      c = rd & (0x80 >> (ea - 1));
	      rd <<= ea;
	    }
	  else
	    {
	      v = 0;
	      c = rd & (1 << (ea - 1));
	      rd = (unsigned char) rd >> ea;
	    }
	  goto shift8;

	case O (O_SHLL, SW):	/* shll.w */
	case O (O_SHLR, SW):	/* shlr.w */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SW))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  if (code->opcode == O (O_SHLL, SW))
	    {
	      v = (ea > 16);
	      c = rd & (0x8000 >> (ea - 1));
	      rd <<= ea;
	    }
	  else
	    {
	      v = 0;
	      c = rd & (1 << (ea - 1));
	      rd = (unsigned short) rd >> ea;
	    }
	  goto shift16;

	case O (O_SHLL, SL):	/* shll.l */
	case O (O_SHLR, SL):	/* shlr.l */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SL))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  if (code->opcode == O (O_SHLL, SL))
	    {
	      v = (ea > 32);
	      c = rd & (0x80000000 >> (ea - 1));
	      rd <<= ea;
	    }
	  else
	    {
	      v = 0;
	      c = rd & (1 << (ea - 1));
	      rd = (unsigned int) rd >> ea;
	    }
	  goto shift32;

	case O (O_SHAL, SB):
	case O (O_SHAR, SB):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SB))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  if (code->opcode == O (O_SHAL, SB))
	    {
	      c = rd & (0x80 >> (ea - 1));
	      res = rd >> (7 - ea);
	      v = ((res & 1) && !(res & 2)) 
		|| (!(res & 1) && (res & 2));
	      rd <<= ea;
	    }
	  else
	    {
	      c = rd & (1 << (ea - 1));
	      v = 0;
	      rd = ((signed char) rd) >> ea;
	    }
	  goto shift8;

	case O (O_SHAL, SW):
	case O (O_SHAR, SW):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SW))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  if (code->opcode == O (O_SHAL, SW))
	    {
	      c = rd & (0x8000 >> (ea - 1));
	      res = rd >> (15 - ea);
	      v = ((res & 1) && !(res & 2)) 
		|| (!(res & 1) && (res & 2));
	      rd <<= ea;
	    }
	  else
	    {
	      c = rd & (1 << (ea - 1));
	      v = 0;
	      rd = ((signed short) rd) >> ea;
	    }
	  goto shift16;

	case O (O_SHAL, SL):
	case O (O_SHAR, SL):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SL))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  if (code->opcode == O (O_SHAL, SL))
	    {
	      c = rd & (0x80000000 >> (ea - 1));
	      res = rd >> (31 - ea);
	      v = ((res & 1) && !(res & 2)) 
		|| (!(res & 1) && (res & 2));
	      rd <<= ea;
	    }
	  else
	    {
	      c = rd & (1 << (ea - 1));
	      v = 0;
	      rd = ((signed int) rd) >> ea;
	    }
	  goto shift32;

	case O (O_ROTL, SB):
	case O (O_ROTR, SB):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SB))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  while (ea--)
	    if (code->opcode == O (O_ROTL, SB))
	      {
		c = rd & 0x80;
		rd <<= 1;
		if (c)
		  rd |= 1;
	      }
	    else
	      {
		c = rd & 1;
		rd = ((unsigned char) rd) >> 1;
		if (c)
		  rd |= 0x80;
	      }

	  v = 0;
	  goto shift8;

	case O (O_ROTL, SW):
	case O (O_ROTR, SW):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SW))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  while (ea--)
	    if (code->opcode == O (O_ROTL, SW))
	      {
		c = rd & 0x8000;
		rd <<= 1;
		if (c)
		  rd |= 1;
	      }
	    else
	      {
		c = rd & 1;
		rd = ((unsigned short) rd) >> 1;
		if (c)
		  rd |= 0x8000;
	      }

	  v = 0;
	  goto shift16;

	case O (O_ROTL, SL):
	case O (O_ROTR, SL):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SL))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  while (ea--)
	    if (code->opcode == O (O_ROTL, SL))
	      {
		c = rd & 0x80000000;
		rd <<= 1;
		if (c)
		  rd |= 1;
	      }
	    else
	      {
		c = rd & 1;
		rd = ((unsigned int) rd) >> 1;
		if (c)
		  rd |= 0x80000000;
	      }

	  v = 0;
	  goto shift32;

	case O (O_ROTXL, SB):
	case O (O_ROTXR, SB):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SB))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  while (ea--)
	    if (code->opcode == O (O_ROTXL, SB))
	      {
		res = rd & 0x80;
		rd <<= 1;
		if (C)
		  rd |= 1;
		c = res;
	      }
	    else
	      {
		res = rd & 1;
		rd = ((unsigned char) rd) >> 1;
		if (C)
		  rd |= 0x80;
		c = res;
	      }

	  v = 0;
	  goto shift8;

	case O (O_ROTXL, SW):
	case O (O_ROTXR, SW):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SW))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  while (ea--)
	    if (code->opcode == O (O_ROTXL, SW))
	      {
		res = rd & 0x8000;
		rd <<= 1;
		if (C)
		  rd |= 1;
		c = res;
	      }
	    else
	      {
		res = rd & 1;
		rd = ((unsigned short) rd) >> 1;
		if (C)
		  rd |= 0x8000;
		c = res;
	      }

	  v = 0;
	  goto shift16;

	case O (O_ROTXL, SL):
	case O (O_ROTXR, SL):
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;

	  if (code->src.type == X (OP_IMM, SL))
	    fetch (sd, &code->src, &ea);
	  else
	    ea = 1;

	  while (ea--)
	    if (code->opcode == O (O_ROTXL, SL))
	      {
		res = rd & 0x80000000;
		rd <<= 1;
		if (C)
		  rd |= 1;
		c = res;
	      }
	    else
	      {
		res = rd & 1;
		rd = ((unsigned int) rd) >> 1;
		if (C)
		  rd |= 0x80000000;
		c = res;
	      }

	  v = 0;
	  goto shift32;

        case O (O_JMP, SN):
        case O (O_JMP, SL):
        case O (O_JMP, SB):		/* jmp */
        case O (O_JMP, SW):
	  {
	    fetch (sd, &code->src, &pc);
	    goto end;
	  }

	case O (O_JSR, SN):
	case O (O_JSR, SL):
	case O (O_JSR, SB):		/* jsr, jump to subroutine */
	case O (O_JSR, SW):
	  {
	    int tmp;
	    if (fetch (sd, &code->src, &pc))
	      goto end;
	  call:
	    tmp = h8_get_reg (sd, SP_REGNUM);

	    if (h8300hmode)
	      {
		tmp -= 4;
		SET_MEMORY_L (tmp, code->next_pc);
	      }
	    else
	      {
		tmp -= 2;
		SET_MEMORY_W (tmp, code->next_pc);
	      }
	    h8_set_reg (sd, SP_REGNUM, tmp);

	    goto end;
	  }

	case O (O_BSR, SW):
	case O (O_BSR, SL):
	case O (O_BSR, SB):		/* bsr, branch to subroutine */
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  pc = code->next_pc + res;
	  goto call;

	case O (O_RTS, SN):		/* rts, return from subroutine */
	  {
	    int tmp;

	    tmp = h8_get_reg (sd, SP_REGNUM);

	    if (h8300hmode)
	      {
		pc = GET_MEMORY_L (tmp);
		tmp += 4;
	      }
	    else
	      {
		pc = GET_MEMORY_W (tmp);
		tmp += 2;
	      }

	    h8_set_reg (sd, SP_REGNUM, tmp);
	    goto end;
	  }

	case O (O_ILL, SB):		/* illegal */
	  sim_engine_set_run_state (sd, sim_stopped, SIGILL);
	  goto end;

	case O (O_SLEEP, SN):		/* sleep */
	  /* Check for magic numbers in r1 and r2.  */
	  if ((h8_get_reg (sd, R1_REGNUM) & 0xffff) == LIBC_EXIT_MAGIC1 &&
	      (h8_get_reg (sd, R2_REGNUM) & 0xffff) == LIBC_EXIT_MAGIC2 &&
	      SIM_WIFEXITED (h8_get_reg (sd, 0)))
	    {
	      /* This trap comes from _exit, not from gdb.  */
	      sim_engine_set_run_state (sd, sim_exited, 
					SIM_WEXITSTATUS (h8_get_reg (sd, 0)));
	    }
	  else
	    {
	      /* Treat it as a sigtrap.  */
	      sim_engine_set_run_state (sd, sim_stopped, SIGTRAP);
	    }
	  goto end;

	case O (O_BPT, SN):
	  sim_engine_set_run_state (sd, sim_stopped, SIGTRAP);
	  goto end;

	case O (O_BSETEQ, SB):
	  if (Z)
	    goto bset;
	  goto next;

	case O (O_BSETNE, SB):
	  if (!Z)
	    goto bset;
	  goto next;

	case O (O_BCLREQ, SB):
	  if (Z)
	    goto bclr;
	  goto next;

	case O (O_BCLRNE, SB):
	  if (!Z)
	    goto bclr;
	  goto next;

	  OBITOP (O_BNOT, 1, 1, ea ^= m);		/* bnot */
	  OBITOP (O_BTST, 1, 0, nz = ea & m);		/* btst */
	bset:
	  OBITOP (O_BSET, 1, 1, ea |= m);		/* bset */
	bclr:
	  OBITOP (O_BCLR, 1, 1, ea &= ~m);		/* bclr */
	  OBITOP (O_BLD, 1, 0, c = ea & m);		/* bld  */
	  OBITOP (O_BILD, 1, 0, c = !(ea & m));		/* bild */
	  OBITOP (O_BST, 1, 1, ea &= ~m;
		  if (C) ea |= m);			/* bst  */
	  OBITOP (O_BIST, 1, 1, ea &= ~m;
		  if (!C) ea |= m);			/* bist */
	  OBITOP (O_BSTZ, 1, 1, ea &= ~m;
		  if (Z) ea |= m);			/* bstz */
	  OBITOP (O_BISTZ, 1, 1, ea &= ~m;
		  if (!Z) ea |= m);			/* bistz */
	  OBITOP (O_BAND, 1, 0, c = (ea & m) && C);	/* band */
	  OBITOP (O_BIAND, 1, 0, c = !(ea & m) && C);	/* biand */
	  OBITOP (O_BOR, 1, 0, c = (ea & m) || C);	/* bor  */
	  OBITOP (O_BIOR, 1, 0, c = !(ea & m) || C);	/* bior */
	  OBITOP (O_BXOR, 1, 0, c = ((ea & m) != 0)!= C);	/* bxor */
	  OBITOP (O_BIXOR, 1, 0, c = !(ea & m) != C);	/* bixor */

	case O (O_BFLD, SB):				/* bfld */
	  /* bitfield load */
	  ea = 0;
	  if (fetch (sd, &code->src, &bit))
	    goto end;

	  if (bit != 0)
	    {
	      if (fetch (sd, &code->dst, &ea))
		goto end;

	      ea &= bit;
	      while (!(bit & 1))
		{
		  ea  >>= 1;
		  bit >>= 1;
		}
	    }
	  if (store (sd, &code->op3, ea))
	    goto end;

	  goto next;

	case O(O_BFST, SB):			/* bfst */
	  /* bitfield store */
	  /* NOTE: the imm8 value is in dst, and the ea value
	     (which is actually the destination) is in op3.
	     It has to be that way, to avoid breaking the assembler.  */

	  if (fetch (sd, &code->dst, &bit))	/* imm8 */
	    goto end;
	  if (bit == 0)				/* noop -- nothing to do.  */
	    goto next;

	  if (fetch (sd, &code->src, &rd))	/* reg8 src */
	    goto end;

	  if (fetch2 (sd, &code->op3, &ea))	/* ea dst */
	    goto end;

	  /* Left-shift the register data into position.  */
	  for (tmp = bit; !(tmp & 1); tmp >>= 1)
	    rd <<= 1;

	  /* Combine it with the neighboring bits.  */
	  ea = (ea & ~bit) | (rd & bit);

	  /* Put it back.  */
	  if (store2 (sd, &code->op3, ea))
	    goto end;
	  goto next;

	case O (O_CLRMAC, SN):		/* clrmac */
	  h8_set_mach (sd, 0);
	  h8_set_macl (sd, 0);
	  h8_set_macZ (sd, 1);
	  h8_set_macV (sd, 0);
	  h8_set_macN (sd, 0);
	  goto next;

	case O (O_STMAC, SL):		/* stmac, 260 */
	  switch (code->src.type) {
	  case X (OP_MACH, SL): 
	    res = h8_get_mach (sd);
	    if (res & 0x200)		/* sign extend */
	      res |= 0xfffffc00;
	    break;
	  case X (OP_MACL, SL): 
	    res = h8_get_macl (sd);
	    break;
	  default:	goto illegal;
	  }
	  nz = !h8_get_macZ (sd);
	  n = h8_get_macN (sd);
	  v = h8_get_macV (sd);

	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_LDMAC, SL):		/* ldmac, 179 */
	  if (fetch (sd, &code->src, &rd))
	    goto end;

	  switch (code->dst.type) {
	  case X (OP_MACH, SL):	
	    rd &= 0x3ff;		/* Truncate to 10 bits */
	    h8_set_mach (sd, rd);
	    break;
	  case X (OP_MACL, SL):	
	    h8_set_macl (sd, rd);
	    break;
	  default:	goto illegal;
	  }
	  h8_set_macV (sd, 0);
	  goto next;

	case O (O_MAC, SW):
	  if (fetch (sd, &code->src, &rd) ||
	      fetch (sd, &code->dst, &res))
	    goto end;

	  /* Ye gods, this is non-portable!
	     However, the existing mul/div code is similar.  */
	  res = SEXTSHORT (res) * SEXTSHORT (rd);

	  if (h8_get_macS (sd))		/* Saturating mode */
	    {
	      long long mac = h8_get_macl (sd);

	      if (mac & 0x80000000)		/* sign extend */
		mac |= 0xffffffff00000000LL;

	      mac += res;
	      if (mac > 0x7fffffff || mac < 0xffffffff80000000LL)
		h8_set_macV (sd, 1);
	      h8_set_macZ (sd, (mac == 0));
	      h8_set_macN (sd, (mac  < 0));
	      h8_set_macl (sd, (int) mac);
	    }
	  else				/* "Less Saturating" mode */
	    {
	      long long mac = h8_get_mach (sd);
	      mac <<= 32;
	      mac += h8_get_macl (sd);

	      if (mac & 0x20000000000LL)	/* sign extend */
		mac |= 0xfffffc0000000000LL;

	      mac += res;
	      if (mac > 0x1ffffffffffLL || 
		  mac < (long long) 0xfffffe0000000000LL)
		h8_set_macV (sd, 1);
	      h8_set_macZ (sd, (mac == 0));
	      h8_set_macN (sd, (mac  < 0));
	      h8_set_macl (sd, (int) mac);
	      mac >>= 32;
	      h8_set_mach (sd, (int) (mac & 0x3ff));
	    }
	  goto next;

	case O (O_MULS, SW):		/* muls.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfff0;
	  else
	    ea = SEXTSHORT (ea);

	  res = SEXTSHORT (ea * SEXTSHORT (rd));

	  n  = res & 0x8000;
	  nz = res & 0xffff;
	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULS, SL):		/* muls.l */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;

	  res = ea * rd;

	  n  = res & 0x80000000;
	  nz = res & 0xffffffff;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_MULSU, SL):		/* muls/u.l */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;

	  /* Compute upper 32 bits of the 64-bit result.  */
	  res = (((long long) ea) * ((long long) rd)) >> 32;

	  n  = res & 0x80000000;
	  nz = res & 0xffffffff;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_MULU, SW):		/* mulu.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  res = UEXTSHORT ((UEXTSHORT (ea) * UEXTSHORT (rd)));

	  /* Don't set Z or N.  */
	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULU, SL):		/* mulu.l */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  res = ea * rd;

	  /* Don't set Z or N.  */
	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULUU, SL):		/* mulu/u.l */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* Compute upper 32 bits of the 64-bit result.  */
	  res = (((unsigned long long) (unsigned) ea) *
		 ((unsigned long long) (unsigned) rd)) >> 32;

	  /* Don't set Z or N.  */
	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULXS, SB):		/* mulxs.b */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;
	  else
	    ea = SEXTCHAR (ea);

	  res = ea * SEXTCHAR (rd);

	  n  = res & 0x8000;
	  nz = res & 0xffff;
	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULXS, SW):		/* mulxs.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfff0;
	  else
	    ea = SEXTSHORT (ea);

	  res = ea * SEXTSHORT (rd & 0xffff);

	  n  = res & 0x80000000;
	  nz = res & 0xffffffff;
	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULXU, SB):		/* mulxu.b */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  res = UEXTCHAR (ea) * UEXTCHAR (rd);

	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_MULXU, SW):		/* mulxu.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  res = UEXTSHORT (ea) * UEXTSHORT (rd);

	  if (store (sd, &code->dst, res))
	    goto end;

	  goto next;

	case O (O_TAS, SB):		/* tas, (test and set?) */
	  if (!h8300smode || code->src.type != X (OP_REG, SL))
	    goto illegal;
	  switch (code->src.reg)
	    {
	    case R0_REGNUM:
	    case R1_REGNUM:
	    case R4_REGNUM:
	    case R5_REGNUM:
	      break;
	    default:
	      goto illegal;
	    }
	  if (fetch (sd, &code->src, &res))
	    goto end;
	  if (store (sd, &code->src, res | 0x80))
	    goto end;

	  goto just_flags_log8;

	case O (O_DIVU, SW):			/* divu.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  n  = ea & 0x8000;
	  nz = ea & 0xffff;
	  if (ea)
	    res = (unsigned) (UEXTSHORT (rd) / UEXTSHORT (ea));
	  else
	    res = 0;

	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_DIVU, SL):			/* divu.l */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  n  = ea & 0x80000000;
	  nz = ea & 0xffffffff;
	  if (ea)
	    res = (unsigned) rd / ea;
	  else
	    res = 0;

	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_DIVS, SW):			/* divs.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;

	  if (ea)
	    {
	      res = SEXTSHORT (rd) / SEXTSHORT (ea);
	      nz  = 1;
	    }
	  else
	    {
	      res = 0;
	      nz  = 0;
	    }

	  n = res & 0x8000;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_DIVS, SL):			/* divs.l */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;

	  if (ea)
	    {
	      res = rd / ea;
	      nz  = 1;
	    }
	  else
	    {
	      res = 0;
	      nz  = 0;
	    }

	  n = res & 0x80000000;
	  if (store (sd, &code->dst, res))
	    goto end;
	  goto next;

	case O (O_DIVXU, SB):			/* divxu.b */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  rd = UEXTSHORT (rd);
	  ea = UEXTCHAR (ea);

	  n  = ea & 0x80;
	  nz = ea & 0xff;
	  if (ea)
	    {
	      tmp = (unsigned) rd % ea;
	      res = (unsigned) rd / ea;
	    }
	  else
	    {
	      tmp = 0;
	      res = 0;
	    }

	  if (store (sd, &code->dst, (res & 0xffff) | (tmp << 8)))
	    goto end;
	  goto next;

	case O (O_DIVXU, SW):			/* divxu.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  ea = UEXTSHORT (ea);

	  n  = ea & 0x8000;
	  nz = ea & 0xffff;
	  if (ea)
	    {
	      tmp = (unsigned) rd % ea;
	      res = (unsigned) rd / ea;
	    }
	  else
	    {
	      tmp = 0;
	      res = 0;
	    }

	  if (store (sd, &code->dst, (res & 0xffff) | (tmp << 16)))
	    goto end;
	  goto next;

	case O (O_DIVXS, SB):			/* divxs.b */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  rd = SEXTSHORT (rd);

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;
	  else
	    ea = SEXTCHAR (ea);

	  if (ea)
	    {
	      tmp = (int) rd % (int) ea;
	      res = (int) rd / (int) ea;
	      nz  = 1;
	    }
	  else
	    {
	      tmp = 0;
	      res = 0;
	      nz  = 0;
	    }

	  n = res & 0x8000;
	  if (store (sd, &code->dst, (res & 0xff) | (tmp << 8)))
	    goto end;
	  goto next;

	case O (O_DIVXS, SW):			/* divxs.w */
	  if (fetch (sd, &code->src, &ea) ||
	      fetch (sd, &code->dst, &rd))
	    goto end;

	  /* FIXME: is this the right place to be doing sign extend?  */
	  if (OP_KIND (code->src.type) == OP_IMM &&
	      (ea & 8) != 0)
	    ea |= 0xfffffff0;
	  else
	    ea = SEXTSHORT (ea);

	  if (ea)
	    {
	      tmp = (int) rd % (int) ea;
	      res = (int) rd / (int) ea;
	      nz  = 1;
	    }
	  else
	    {
	      tmp = 0;
	      res = 0;
	      nz  = 0;
	    }

	  n = res & 0x80000000;
	  if (store (sd, &code->dst, (res & 0xffff) | (tmp << 16)))
	    goto end;
	  goto next;

	case O (O_EXTS, SW):			/* exts.w, signed extend */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  ea = rd & 0x80 ? -256 : 0;
	  res = (rd & 0xff) + ea;
	  goto log16;

	case O (O_EXTS, SL):			/* exts.l, signed extend */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (code->src.type == X (OP_IMM, SL))
	    {
	      if (fetch (sd, &code->src, &ea))
		goto end;

	      if (ea == 2)			/* exts.l #2, nn */
		{
		  /* Sign-extend from 8-bit to 32-bit.  */
		  ea = rd & 0x80 ? -256 : 0;
		  res = (rd & 0xff) + ea;
		  goto log32;
		}
	    }
	  /* Sign-extend from 16-bit to 32-bit.  */
	  ea = rd & 0x8000 ? -65536 : 0;
	  res = (rd & 0xffff) + ea;
	  goto log32;

	case O (O_EXTU, SW):			/* extu.w, unsigned extend */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  ea = 0;
	  res = (rd & 0xff) + ea;
	  goto log16;

	case O (O_EXTU, SL):			/* extu.l, unsigned extend */
	  if (fetch2 (sd, &code->dst, &rd))
	    goto end;
	  if (code->src.type == X (OP_IMM, SL))
	    {
	      if (fetch (sd, &code->src, &ea))
		goto end;

	      if (ea == 2)			/* extu.l #2, nn */
		{
		  /* Zero-extend from 8-bit to 32-bit.  */
		  ea = 0;
		  res = (rd & 0xff) + ea;
		  goto log32;
		}
	    }
	  /* Zero-extend from 16-bit to 32-bit.  */
	  ea = 0;
	  res = (rd & 0xffff) + ea;
	  goto log32;

	case O (O_NOP, SN):			/* nop */
	  goto next;

	case O (O_STM, SL):			/* stm, store to memory */
	  {
	    int nregs, firstreg, i;

	    nregs = GET_MEMORY_B (pc + 1);
	    nregs >>= 4;
	    nregs &= 0xf;
	    firstreg = code->src.reg;
	    firstreg &= 0xf;
	    for (i = firstreg; i <= firstreg + nregs; i++)
	      {
		h8_set_reg (sd, SP_REGNUM, h8_get_reg (sd, SP_REGNUM) - 4);
		SET_MEMORY_L (h8_get_reg (sd, SP_REGNUM), h8_get_reg (sd, i));
	      }
	  }
	  goto next;

	case O (O_LDM, SL):			/* ldm,  load from memory */
	  {
	    int nregs, firstreg, i;

	    nregs = GET_MEMORY_B (pc + 1);
	    nregs >>= 4;
	    nregs &= 0xf;
	    firstreg = code->dst.reg;
	    firstreg &= 0xf;
	    for (i = firstreg; i >= firstreg - nregs; i--)
	      {
		h8_set_reg (sd, i, GET_MEMORY_L (h8_get_reg (sd, SP_REGNUM)));
		h8_set_reg (sd, SP_REGNUM, h8_get_reg (sd, SP_REGNUM) + 4);
	      }
	  }
	  goto next;

	case O (O_DAA, SB):
	  /* Decimal Adjust Addition.  This is for BCD arithmetic.  */
	  res = GET_B_REG (code->src.reg);
	  if (!c && (0 <= (res >>  4) && (res >>  4) <= 9) && 
	      !h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
	    res = res;		/* Value added == 0.  */
	  else if (!c && (0  <= (res >>  4) && (res >>  4) <=  8) && 
		   !h && (10 <= (res & 0xf) && (res & 0xf) <= 15))
	    res = res + 0x6;		/* Value added == 6.  */
	  else if (!c && (0 <= (res >>  4) && (res >>  4) <= 9) && 
		    h && (0 <= (res & 0xf) && (res & 0xf) <= 3))
	    res = res + 0x6;		/* Value added == 6.  */
	  else if (!c && (10 <= (res >>  4) && (res >>  4) <= 15) && 
		   !h && (0  <= (res & 0xf) && (res & 0xf) <=  9))
	    res = res + 0x60;		/* Value added == 60.  */
	  else if (!c && (9  <= (res >>  4) && (res >>  4) <= 15) && 
		   !h && (10 <= (res & 0xf) && (res & 0xf) <= 15))
	    res = res + 0x66;		/* Value added == 66.  */
	  else if (!c && (10 <= (res >>  4) && (res >>  4) <= 15) && 
		    h && (0  <= (res & 0xf) && (res & 0xf) <=  3))
	    res = res + 0x66;		/* Value added == 66.  */
	  else if ( c && (1 <= (res >>  4) && (res >>  4) <= 2) && 
		   !h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
	    res = res + 0x60;		/* Value added == 60.  */
	  else if ( c && (1  <= (res >>  4) && (res >>  4) <=  2) && 
		   !h && (10 <= (res & 0xf) && (res & 0xf) <= 15))
	    res = res + 0x66;		/* Value added == 66.  */
	  else if (c && (1 <= (res >>  4) && (res >>  4) <= 3) && 
		   h && (0 <= (res & 0xf) && (res & 0xf) <= 3))
	    res = res + 0x66;		/* Value added == 66.  */

	  goto alu8;

	case O (O_DAS, SB):
	  /* Decimal Adjust Subtraction.  This is for BCD arithmetic.  */
	  res = GET_B_REG (code->src.reg); /* FIXME fetch, fetch2... */
	  if (!c && (0 <= (res >>  4) && (res >>  4) <= 9) && 
	      !h && (0 <= (res & 0xf) && (res & 0xf) <= 9))
	    res = res;		/* Value added == 0.  */
	  else if (!c && (0 <= (res >>  4) && (res >>  4) <=  8) && 
		    h && (6 <= (res & 0xf) && (res & 0xf) <= 15))
	    res = res + 0xfa;		/* Value added == 0xfa.  */
	  else if ( c && (7 <= (res >>  4) && (res >>  4) <= 15) && 
		   !h && (0 <= (res & 0xf) && (res & 0xf) <=  9))
	    res = res + 0xa0;		/* Value added == 0xa0.  */
	  else if (c && (6 <= (res >>  4) && (res >>  4) <= 15) && 
		   h && (6 <= (res & 0xf) && (res & 0xf) <= 15))
	    res = res + 0x9a;		/* Value added == 0x9a.  */

	  goto alu8;

	default:
	illegal:
	  sim_engine_set_run_state (sd, sim_stopped, SIGILL);
	  goto end;

	}

      (*sim_callback->printf_filtered) (sim_callback,
					"sim_resume: internal error.\n");
      sim_engine_set_run_state (sd, sim_stopped, SIGILL);
      goto end;

    setc:
      if (code->dst.type == X (OP_CCR, SB) ||
	  code->dst.type == X (OP_CCR, SW))
	{
	  h8_set_ccr (sd, res);
	  /* Get Status Register (flags).  */
	  c = (h8_get_ccr (sd) >> 0) & 1;
	  v = (h8_get_ccr (sd) >> 1) & 1;
	  nz = !((h8_get_ccr (sd) >> 2) & 1);
	  n = (h8_get_ccr (sd) >> 3) & 1;
	  u = (h8_get_ccr (sd) >> 4) & 1;
	  h = (h8_get_ccr (sd) >> 5) & 1;
	  ui = ((h8_get_ccr (sd) >> 6) & 1);
	  intMaskBit = (h8_get_ccr (sd) >> 7) & 1;
	}
      else if (h8300smode &&
	       (code->dst.type == X (OP_EXR, SB) ||
		code->dst.type == X (OP_EXR, SW)))
	{
	  h8_set_exr (sd, res);
	  if (h8300smode)	/* Get exr.  */
	    {
	      trace = (h8_get_exr (sd) >> 7) & 1;
	      intMask = h8_get_exr (sd) & 7;
	    }
	}
      else
	goto illegal;

      goto next;

    condtrue:
      /* When a branch works */
      if (fetch (sd, &code->src, &res))
	goto end;
      if (res & 1)		/* bad address */
	goto illegal;
      pc = code->next_pc + res;
      goto end;

      /* Set the cond codes from res */
    bitop:

      /* Set the flags after an 8 bit inc/dec operation */
    just_flags_inc8:
      n = res & 0x80;
      nz = res & 0xff;
      v = (rd & 0x7f) == 0x7f;
      goto next;

      /* Set the flags after an 16 bit inc/dec operation */
    just_flags_inc16:
      n = res & 0x8000;
      nz = res & 0xffff;
      v = (rd & 0x7fff) == 0x7fff;
      goto next;

      /* Set the flags after an 32 bit inc/dec operation */
    just_flags_inc32:
      n = res & 0x80000000;
      nz = res & 0xffffffff;
      v = (rd & 0x7fffffff) == 0x7fffffff;
      goto next;

    shift8:
      /* Set flags after an 8 bit shift op, carry,overflow set in insn */
      n = (rd & 0x80);
      nz = rd & 0xff;
      if (store2 (sd, &code->dst, rd))
	goto end;
      goto next;

    shift16:
      /* Set flags after an 16 bit shift op, carry,overflow set in insn */
      n = (rd & 0x8000);
      nz = rd & 0xffff;
      if (store2 (sd, &code->dst, rd))
	goto end;
      goto next;

    shift32:
      /* Set flags after an 32 bit shift op, carry,overflow set in insn */
      n = (rd & 0x80000000);
      nz = rd & 0xffffffff;
      if (store2 (sd, &code->dst, rd))
	goto end;
      goto next;

    log32:
      if (store2 (sd, &code->dst, res))
	goto end;

    just_flags_log32:
      /* flags after a 32bit logical operation */
      n = res & 0x80000000;
      nz = res & 0xffffffff;
      v = 0;
      goto next;

    log16:
      if (store2 (sd, &code->dst, res))
	goto end;

    just_flags_log16:
      /* flags after a 16bit logical operation */
      n = res & 0x8000;
      nz = res & 0xffff;
      v = 0;
      goto next;

    log8:
      if (store2 (sd, &code->dst, res))
	goto end;

    just_flags_log8:
      n = res & 0x80;
      nz = res & 0xff;
      v = 0;
      goto next;

    alu8:
      if (store2 (sd, &code->dst, res))
	goto end;

    just_flags_alu8:
      n = res & 0x80;
      nz = res & 0xff;
      c = (res & 0x100);
      switch (code->opcode / 4)
	{
	case O_ADD:
	case O_ADDX:
	  v = ((rd & 0x80) == (ea & 0x80)
	       && (rd & 0x80) != (res & 0x80));
	  break;
	case O_SUB:
	case O_SUBX:
	case O_CMP:
	  v = ((rd & 0x80) != (-ea & 0x80)
	       && (rd & 0x80) != (res & 0x80));
	  break;
	case O_NEG:
	  v = (rd == 0x80);
	  break;
	case O_DAA:
	case O_DAS:
	  break;	/* No effect on v flag.  */
	}
      goto next;

    alu16:
      if (store2 (sd, &code->dst, res))
	goto end;

    just_flags_alu16:
      n = res & 0x8000;
      nz = res & 0xffff;
      c = (res & 0x10000);
      switch (code->opcode / 4)
	{
	case O_ADD:
	case O_ADDX:
	  v = ((rd & 0x8000) == (ea & 0x8000)
	       && (rd & 0x8000) != (res & 0x8000));
	  break;
	case O_SUB:
	case O_SUBX:
	case O_CMP:
	  v = ((rd & 0x8000) != (-ea & 0x8000)
	       && (rd & 0x8000) != (res & 0x8000));
	  break;
	case O_NEG:
	  v = (rd == 0x8000);
	  break;
	}
      goto next;

    alu32:
      if (store2 (sd, &code->dst, res))
	goto end;

    just_flags_alu32:
      n = res & 0x80000000;
      nz = res & 0xffffffff;
      switch (code->opcode / 4)
	{
	case O_ADD:
	case O_ADDX:
	  v = ((rd & 0x80000000) == (ea & 0x80000000)
	       && (rd & 0x80000000) != (res & 0x80000000));
	  c = ((unsigned) res < (unsigned) rd) || 
	    ((unsigned) res < (unsigned) ea);
	  break;
	case O_SUB:
	case O_SUBX:
	case O_CMP:
	  v = ((rd & 0x80000000) != (-ea & 0x80000000)
	       && (rd & 0x80000000) != (res & 0x80000000));
	  c = (unsigned) rd < (unsigned) -ea;
	  break;
	case O_NEG:
	  v = (rd == 0x80000000);
	  c = res != 0;
	  break;
	}
      goto next;

    next:
      if ((res = h8_get_delayed_branch (sd)) != 0)
	{
	  pc = res;
	  h8_set_delayed_branch (sd, 0);
	}
      else
	pc = code->next_pc;

    end:
      
      if (--poll_count < 0)
	{
	  poll_count = POLL_QUIT_INTERVAL;
	  if ((*sim_callback->poll_quit) != NULL
	      && (*sim_callback->poll_quit) (sim_callback))
	    sim_engine_set_run_state (sd, sim_stopped, SIGINT);
	}
      sim_engine_get_run_state (sd, &reason, &sigrc);
    } while (reason == sim_running);

  h8_set_ticks (sd, h8_get_ticks (sd) + get_now () - tick_start);
  h8_set_cycles (sd, h8_get_cycles (sd) + cycles);
  h8_set_insts (sd, h8_get_insts (sd) + insts);
  h8_set_pc (sd, pc);
  BUILDSR (sd);

  if (h8300smode)
    h8_set_exr (sd, (trace<<7) | intMask);

  h8_set_mask (sd, oldmask);
  signal (SIGINT, prev);
}

int
sim_trace (SIM_DESC sd)
{
  /* FIXME: Unfinished.  */
  (*sim_callback->printf_filtered) (sim_callback,
				    "sim_trace: trace not supported.\n");
  return 1;	/* Done.  */
}

int
sim_write (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
  int i;

  init_pointers (sd);
  if (addr < 0)
    return 0;
  for (i = 0; i < size; i++)
    {
      if (addr < memory_size)
	{
	  h8_set_memory    (sd, addr + i, buffer[i]);
	  h8_set_cache_idx (sd, addr + i,  0);
	}
      else
	{
	  h8_set_eightbit (sd, (addr + i) & 0xff, buffer[i]);
	}
    }
  return size;
}

int
sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
{
  init_pointers (sd);
  if (addr < 0)
    return 0;
  if (addr < memory_size)
    memcpy (buffer, h8_get_memory_buf (sd) + addr, size);
  else
    memcpy (buffer, h8_get_eightbit_buf (sd) + (addr & 0xff), size);
  return size;
}


int
sim_store_register (SIM_DESC sd, int rn, unsigned char *value, int length)
{
  int longval;
  int shortval;
  int intval;
  longval = (value[0] << 24) | (value[1] << 16) | (value[2] << 8) | value[3];
  shortval = (value[0] << 8) | (value[1]);
  intval = h8300hmode ? longval : shortval;

  init_pointers (sd);
  switch (rn)
    {
    case PC_REGNUM:
      h8_set_pc (sd, intval);
      break;
    default:
      (*sim_callback->printf_filtered) (sim_callback, 
					"sim_store_register: bad regnum %d.\n",
					rn);
    case R0_REGNUM:
    case R1_REGNUM:
    case R2_REGNUM:
    case R3_REGNUM:
    case R4_REGNUM:
    case R5_REGNUM:
    case R6_REGNUM:
    case R7_REGNUM:
      h8_set_reg (sd, rn, intval);
      break;
    case CCR_REGNUM:
      h8_set_ccr (sd, intval);
      break;
    case EXR_REGNUM:
      h8_set_exr (sd, intval);
      break;
    case CYCLE_REGNUM:
      h8_set_cycles (sd, longval);
      break;

    case INST_REGNUM:
      h8_set_insts (sd, longval);
      break;

    case TICK_REGNUM:
      h8_set_ticks (sd, longval);
      break;
    }
  return -1;
}

int
sim_fetch_register (SIM_DESC sd, int rn, unsigned char *buf, int length)
{
  int v;
  int longreg = 0;

  init_pointers (sd);

  if (!h8300smode && rn >= EXR_REGNUM)
    rn++;
  switch (rn)
    {
    default:
      (*sim_callback->printf_filtered) (sim_callback, 
					"sim_fetch_register: bad regnum %d.\n",
					rn);
      v = 0;
      break;
    case CCR_REGNUM:
      v = h8_get_ccr (sd);
      break;
    case EXR_REGNUM:
      v = h8_get_exr (sd);
      break;
    case PC_REGNUM:
      v = h8_get_pc (sd);
      break;
    case R0_REGNUM:
    case R1_REGNUM:
    case R2_REGNUM:
    case R3_REGNUM:
    case R4_REGNUM:
    case R5_REGNUM:
    case R6_REGNUM:
    case R7_REGNUM:
      v = h8_get_reg (sd, rn);
      break;
    case CYCLE_REGNUM:
      v = h8_get_cycles (sd);
      longreg = 1;
      break;
    case TICK_REGNUM:
      v = h8_get_ticks (sd);
      longreg = 1;
      break;
    case INST_REGNUM:
      v = h8_get_insts (sd);
      longreg = 1;
      break;
    }
  if (h8300hmode || longreg)
    {
      buf[0] = v >> 24;
      buf[1] = v >> 16;
      buf[2] = v >> 8;
      buf[3] = v >> 0;
    }
  else
    {
      buf[0] = v >> 8;
      buf[1] = v;
    }
  return -1;
}

void
sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
{
  sim_engine_get_run_state (sd, reason, sigrc);
}

/* FIXME: Rename to sim_set_mem_size.  */

void
sim_size (int n)
{
  /* Memory size is fixed.  */
}

static void
set_simcache_size (SIM_DESC sd, int n)
{
  if (sd->sim_cache)
    free (sd->sim_cache);
  if (n < 2)
    n = 2;
  sd->sim_cache = (decoded_inst *) malloc (sizeof (decoded_inst) * n);
  memset (sd->sim_cache, 0, sizeof (decoded_inst) * n);
  sd->sim_cache_size = n;
}


void
sim_info (SIM_DESC sd, int verbose)
{
  double timetaken = (double) h8_get_ticks (sd) / (double) now_persec ();
  double virttime = h8_get_cycles (sd) / 10.0e6;

  (*sim_callback->printf_filtered) (sim_callback,
				    "\n\n#instructions executed  %10d\n",
				    h8_get_insts (sd));
  (*sim_callback->printf_filtered) (sim_callback,
				    "#cycles (v approximate) %10d\n",
				    h8_get_cycles (sd));
  (*sim_callback->printf_filtered) (sim_callback,
				    "#real time taken        %10.4f\n",
				    timetaken);
  (*sim_callback->printf_filtered) (sim_callback,
				    "#virtual time taked     %10.4f\n",
				    virttime);
  if (timetaken != 0.0)
    (*sim_callback->printf_filtered) (sim_callback,
				      "#simulation ratio       %10.4f\n",
				      virttime / timetaken);
  (*sim_callback->printf_filtered) (sim_callback,
				    "#compiles               %10d\n",
				    h8_get_compiles (sd));
  (*sim_callback->printf_filtered) (sim_callback,
				    "#cache size             %10d\n",
				    sd->sim_cache_size);

#ifdef ADEBUG
  /* This to be conditional on `what' (aka `verbose'),
     however it was never passed as non-zero.  */
  if (1)
    {
      int i;
      for (i = 0; i < O_LAST; i++)
	{
	  if (h8_get_stats (sd, i))
	    (*sim_callback->printf_filtered) (sim_callback, "%d: %d\n", 
					      i, h8_get_stats (sd, i));
	}
    }
#endif
}

/* Indicate whether the cpu is an H8/300 or H8/300H.
   FLAG is non-zero for the H8/300H.  */

void
set_h8300h (int h_flag, int s_flag, int sx_flag)
{
  /* FIXME: Much of the code in sim_load can be moved to sim_open.
     This function being replaced by a sim_open:ARGV configuration
     option.  */

  h8300hmode  = h_flag;
  h8300smode  = s_flag;
  h8300sxmode = sx_flag;
}

/* Cover function of sim_state_free to free the cpu buffers as well.  */

static void
free_state (SIM_DESC sd)
{
  if (STATE_MODULES (sd) != NULL)
    sim_module_uninstall (sd);

  /* Fixme: free buffers in _sim_cpu.  */
  sim_state_free (sd);
}

SIM_DESC
sim_open (SIM_OPEN_KIND kind, 
	  struct host_callback_struct *callback, 
	  struct bfd *abfd, 
	  char **argv)
{
  SIM_DESC sd;
  sim_cpu *cpu;

  sd = sim_state_alloc (kind, callback);
  sd->cpu = sim_cpu_alloc (sd, 0);
  cpu = STATE_CPU (sd, 0);
  SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
  sim_state_initialize (sd, cpu);
  /* sim_cpu object is new, so some initialization is needed.  */
  init_pointers_needed = 1;

  /* For compatibility (FIXME: is this right?).  */
  current_alignment = NONSTRICT_ALIGNMENT;
  current_target_byte_order = BIG_ENDIAN;

  if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

    /* getopt will print the error message so we just have to exit if
       this fails.  FIXME: Hmmm...  in the case of gdb we need getopt
       to call print_filtered.  */
  if (sim_parse_args (sd, argv) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
      free_state (sd);
      return 0;
    }

  /* Check for/establish the a reference program image.  */
  if (sim_analyze_program (sd,
			   (STATE_PROG_ARGV (sd) != NULL
			    ? *STATE_PROG_ARGV (sd)
			    : NULL), abfd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  /* Establish any remaining configuration options.  */
  if (sim_config (sd) != SIM_RC_OK)
    {
      free_state (sd);
      return 0;
    }

  if (sim_post_argv_init (sd) != SIM_RC_OK)
    {
      /* Uninstall the modules to avoid memory leaks,
         file descriptor leaks, etc.  */
      free_state (sd);
      return 0;
    }

  /*  sim_hw_configure (sd); */

  /* FIXME: Much of the code in sim_load can be moved here.  */

  sim_kind = kind;
  myname = argv[0];
  sim_callback = callback;
  return sd;
}

void
sim_close (SIM_DESC sd, int quitting)
{
  /* Nothing to do.  */
}

/* Called by gdb to load a program into memory.  */

SIM_RC
sim_load (SIM_DESC sd, char *prog, bfd *abfd, int from_tty)
{
  bfd *prog_bfd;

  /* FIXME: The code below that sets a specific variant of the H8/300
     being simulated should be moved to sim_open().  */

  /* See if the file is for the H8/300 or H8/300H.  */
  /* ??? This may not be the most efficient way.  The z8k simulator
     does this via a different mechanism (INIT_EXTRA_SYMTAB_INFO).  */
  if (abfd != NULL)
    prog_bfd = abfd;
  else
    prog_bfd = bfd_openr (prog, "coff-h8300");
  if (prog_bfd != NULL)
    {
      /* Set the cpu type.  We ignore failure from bfd_check_format
	 and bfd_openr as sim_load_file checks too.  */
      if (bfd_check_format (prog_bfd, bfd_object))
	{
	  unsigned long mach = bfd_get_mach (prog_bfd);

	  set_h8300h (mach == bfd_mach_h8300h || 
		      mach == bfd_mach_h8300s ||
		      mach == bfd_mach_h8300sx,
		      mach == bfd_mach_h8300s ||
		      mach == bfd_mach_h8300sx,
		      mach == bfd_mach_h8300sx);
	}
    }

  /* If we're using gdb attached to the simulator, then we have to
     reallocate memory for the simulator.

     When gdb first starts, it calls fetch_registers (among other
     functions), which in turn calls init_pointers, which allocates
     simulator memory.

     The problem is when we do that, we don't know whether we're
     debugging an H8/300 or H8/300H program.

     This is the first point at which we can make that determination,
     so we just reallocate memory now; this will also allow us to handle
     switching between H8/300 and H8/300H programs without exiting
     gdb.  */

  if (h8300smode)
    memory_size = H8300S_MSIZE;
  else if (h8300hmode)
    memory_size = H8300H_MSIZE;
  else
    memory_size = H8300_MSIZE;

  if (h8_get_memory_buf (sd))
    free (h8_get_memory_buf (sd));
  if (h8_get_cache_idx_buf (sd))
    free (h8_get_cache_idx_buf (sd));
  if (h8_get_eightbit_buf (sd))
    free (h8_get_eightbit_buf (sd));

  h8_set_memory_buf (sd, (unsigned char *) 
		     calloc (sizeof (char), memory_size));
  h8_set_cache_idx_buf (sd, (unsigned short *) 
			calloc (sizeof (short), memory_size));
  h8_set_eightbit_buf (sd, (unsigned char *) calloc (sizeof (char), 256));

  /* `msize' must be a power of two.  */
  if ((memory_size & (memory_size - 1)) != 0)
    {
      (*sim_callback->printf_filtered) (sim_callback, 
					"sim_load: bad memory size.\n");
      return SIM_RC_FAIL;
    }
  h8_set_mask (sd, memory_size - 1);

  if (sim_load_file (sd, myname, sim_callback, prog, prog_bfd,
		     sim_kind == SIM_OPEN_DEBUG,
		     0, sim_write)
      == NULL)
    {
      /* Close the bfd if we opened it.  */
      if (abfd == NULL && prog_bfd != NULL)
	bfd_close (prog_bfd);
      return SIM_RC_FAIL;
    }

  /* Close the bfd if we opened it.  */
  if (abfd == NULL && prog_bfd != NULL)
    bfd_close (prog_bfd);
  return SIM_RC_OK;
}

SIM_RC
sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
{
  int i = 0;
  int len_arg = 0;
  int no_of_args = 0;

  if (abfd != NULL)
    h8_set_pc (sd, bfd_get_start_address (abfd));
  else
    h8_set_pc (sd, 0);

  /* Command Line support.  */
  if (argv != NULL)
    {
      /* Counting the no. of commandline arguments.  */
      for (no_of_args = 0; argv[no_of_args] != NULL; no_of_args++)
        continue;

      /* Allocating memory for the argv pointers.  */
      h8_set_command_line (sd, (char **) malloc ((sizeof (char *))
						 * (no_of_args + 1)));

      for (i = 0; i < no_of_args; i++)
	{
	  /* Copying the argument string.  */
	  h8_set_cmdline_arg (sd, i, (char *) strdup (argv[i]));
	}
      h8_set_cmdline_arg (sd, i, NULL);
    }
  
  return SIM_RC_OK;
}

void
sim_do_command (SIM_DESC sd, char *cmd)
{
  (*sim_callback->printf_filtered) (sim_callback,
				    "This simulator does not accept any commands.\n");
}

void
sim_set_callbacks (struct host_callback_struct *ptr)
{
  sim_callback = ptr;
}
/* Main header for the Hitachi h8/300 architecture.  */

#include "bfd.h"

#ifndef SIM_MAIN_H
#define SIM_MAIN_H

#define DEBUG

/* These define the size of main memory for the simulator.

   Note the size of main memory for the H8/300H is only 256k.  Keeping it
   small makes the simulator run much faster and consume less memory.

   The linker knows about the limited size of the simulator's main memory
   on the H8/300H (via the h8300h.sc linker script).  So if you change
   H8300H_MSIZE, be sure to fix the linker script too.

   Also note that there's a separate "eightbit" area aside from main
   memory.  For simplicity, the simulator assumes any data memory reference
   outside of main memory refers to the eightbit area (in theory, this
   can only happen when simulating H8/300H programs).  We make no attempt
   to catch overlapping addresses, wrapped addresses, etc etc.  */

#define H8300_MSIZE (1 << 16)

/* avolkov: 
   Next 2 macros are ugly for any workstation, but while they're work.
   Memory size MUST be configurable.  */
#define H8300H_MSIZE (1 << 18) 
#define H8300S_MSIZE (1 << 24) 

#define CSIZE 1024

enum h8_regnum {
  R0_REGNUM = 0,
  R1_REGNUM = 1,
  R2_REGNUM = 2,
  R3_REGNUM = 3,
  R4_REGNUM = 4,
  R5_REGNUM = 5,
  R6_REGNUM = 6,
  R7_REGNUM = 7,

  SP_REGNUM = R7_REGNUM,	/* Contains address of top of stack */
  FP_REGNUM = R6_REGNUM,	/* Contains address of executing
				   stack frame */
  CCR_REGNUM = 8,		/* Contains processor status */
  PC_REGNUM  = 9,		/* Contains program counter */
  CYCLE_REGNUM = 10,
  EXR_REGNUM  = 11,
  INST_REGNUM = 12,
  TICK_REGNUM = 13,
  SBR_REGNUM =  14, 
  VBR_REGNUM =  15,
  MACH_REGNUM = 16, 
  MACL_REGNUM = 17,

  ZERO_REGNUM = 18
};

enum h8_typecodes {
  OP_NULL,
  OP_REG,		/* Register direct.  */
  OP_LOWREG,		/* Special reg syntax for "bra".  */
  OP_DISP,		/* Register indirect w/displacement.  */
  /* Note: h8300, h8300h, and h8300s permit only pre-decr and post-incr.  */
  OP_PREDEC,		/* Register indirect w/pre-decrement.  */
  OP_POSTDEC,		/* Register indirect w/post-decrement.  */
  OP_PREINC,		/* Register indirect w/pre-increment.  */
  OP_POSTINC,		/* Register indirect w/post-increment.  */
  OP_PCREL,		/* PC Relative.  */
  OP_MEM,		/* Absolute memory address.  */
  OP_CCR,		/* Condition Code Register.  */
  OP_IMM,		/* Immediate value.  */
  /*OP_ABS*/		/* Un-used (duplicates op_mem?).  */
  OP_EXR,		/* EXtended control Register.  */
  OP_SBR, 		/* Vector Base Register.  */
  OP_VBR,		/* Short-address Base Register.  */
  OP_MACH,		/* Multiply Accumulator - high.  */
  OP_MACL,		/* Multiply Accumulator - low.   */
  /* FIXME: memory indirect?  */
  OP_INDEXB,		/* Byte index mode */
  OP_INDEXW,		/* Word index mode */
  OP_INDEXL		/* Long index mode */
};

#include "sim-basics.h"

/* Define sim_cia.  */
typedef unsigned32 sim_cia;

#include "sim-base.h"

/* Structure used to describe addressing */

typedef struct
{
  int type;
  int reg;
  int literal;
} ea_type;

/* Struct for instruction decoder.  */
typedef struct
{
  ea_type src;
  ea_type dst;
  ea_type op3;
  int opcode;
  int next_pc;
  int oldpc;
  int cycles;
#ifdef DEBUG
  struct h8_opcode *op;
#endif
} decoded_inst;

struct _sim_cpu {
  unsigned int regs[20];	/* 8 GR's plus ZERO, SBR, and VBR.  */
  unsigned int pc;

  int macS;			/* MAC Saturating mode */
  int macV;			/* MAC Overflow */
  int macN;			/* MAC Negative */
  int macZ;			/* MAC Zero     */

  int delayed_branch;
  char **command_line;		/* Pointer to command line arguments.  */

  unsigned char *memory;
  unsigned char *eightbit;
  int mask;
  
  sim_cpu_base base;
};

/* The sim_state struct.  */
struct sim_state {
  struct _sim_cpu *cpu;
  unsigned int sim_cache_size;
  decoded_inst *sim_cache;
  unsigned short *cache_idx;
  unsigned long memory_size;
  int cache_top;
  int compiles;
#ifdef ADEBUG
  int stats[O_LAST];
#endif
  sim_state_base base;
};

/* The current state of the processor; registers, memory, etc.  */

#define CIA_GET(CPU)		(cpu_get_pc (CPU))
#define CIA_SET(CPU, VAL)	(cpu_set_pc ((CPU), (VAL)))
#define STATE_CPU(SD, N)	((SD)->cpu)	/* Single Processor.  */
#define cpu_set_pc(CPU, VAL)	(((CPU)->pc)  = (VAL))
#define cpu_get_pc(CPU)		(((CPU)->pc))

/* Magic numbers used to distinguish an exit from a breakpoint.  */
#define LIBC_EXIT_MAGIC1 0xdead	
#define LIBC_EXIT_MAGIC2 0xbeef	
/* Local version of macros for decoding exit status.  
   (included here rather than try to find target version of wait.h)
*/
#define SIM_WIFEXITED(V) (((V) & 0xff) == 0)
#define SIM_WEXITSTATUS(V) ((V) >> 8)

#endif /* SIM_MAIN_H */

Index Nav: [Date Index] [Subject Index] [Author Index] [Thread Index]
Message Nav: [Date Prev] [Date Next] [Thread Prev] [Thread Next]